
TEAM LinG

CSS Hacks and Filters
Making Cascading
Style Sheets Work

01_579851 ffirs.qxd 5/4/05 10:55 PM Page i

TEAM LinG

01_579851 ffirs.qxd 5/4/05 10:55 PM Page ii

TEAM LinG

CSS Hacks and Filters
Making Cascading
Style Sheets Work

Joseph Lowery

01_579851 ffirs.qxd 5/4/05 10:55 PM Page iii

TEAM LinG

For general information on our other products and services, please contact our Customer Care Department within the U.S. at
800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Lowery, Joseph (Joseph W.)
CSS hacks and filters / Joseph Lowery.

p. cm.
Includes bibliographical references and index.
ISBN 0-7645-7985-1 (paper/website)

1. Web sites--Design. 2. Computer graphics. 3. Cascading style sheets. I. Title.
TK5105.888.L693 2005
006.7--dc22

2005007456

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. ExtremeTech and the ExtremeTech
logo are trademarks of Ziff Davis Publishing Holdings, Inc., used under license. All rights reserved. All other trademarks are the property
of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

CSS Hacks and Filters: Making Cascading Style Sheets Work

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN 13: 978-0-7645-7985-1
ISBN 10: 0-7645-7985-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/ST/QV/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN
46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the
accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of
fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies
contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional
person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization
or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be
aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

01_579851 ffirs.qxd 5/4/05 10:55 PM Page iv

TEAM LinG

www.wiley.com

About the Author
Joseph Lowery is the author of the Dreamweaver MX 2004 Bible (Indianapolis, IN, Wiley
Publishing, 2004) and the Fireworks MX Bible (Indianapolis, IN: Wiley Publishing, 2002),
as well as Design and Deploy (San Francisco: Macromedia Press, 2004) and Joseph Lowery’s
Beyond Dreamweaver (Berkeley, CA: New Riders Press, 2002). In recent years, he co-authored
Dreamweaver MX 2004 Web Application Recipes (Berkeley, CA: New Riders Press, 2003) with
Eric Ott and the Dreamweaver MX Killer Tips book (Berkeley, CA: New Riders Press, 2003)
with Angela Buraglia. His books are international bestsellers, having sold more than 400,000
copies worldwide in nine different languages. As a programmer, he has developed numerous
extensions for the Dreamweaver community, both free and commercial, including FlashBang!
and Deva Tools for Dreamweaver. He also has presented at MacDesign in Chicago, Seybold in
both Boston and San Francisco, and Macromedia MAX conferences in the U.S. and Europe.

01_579851 ffirs.qxd 5/4/05 10:55 PM Page v

TEAM LinG

Credits
Executive Editor
Chris Webb

Development Editor
Kevin Shafer

Technical Editor
Mark Fletcher

Production Editor
Gabrielle Nabi

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group
Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphic and Layout Technicians
Lauren Goddard
Jennifer Heleine
Melanee Prendergast
Amanda Spagnuolo
Julie Trippetti

Quality Control Technicians
Laura Albert
John Greenough
Joe Niesen

Proofreading and Indexing
TECHBOOKS Production Services

01_579851 ffirs.qxd 5/4/05 10:55 PM Page vi

TEAM LinG

To the hundreds of CSS explorers who
have charted this rough new terrain

with unflinching vigilance
and unwavering selflessness.

01_579851 ffirs.qxd 5/4/05 10:55 PM Page vii

TEAM LinG

01_579851 ffirs.qxd 5/4/05 10:55 PM Page viii

TEAM LinG

Contents at a Glance
Acknowledgments . xvii
Introduction . xix

Chapter 1: Why Hack CSS?. 1
Chapter 2: Filtering CSS for Older Browsers . 11
Chapter 3: Hiding CSS from Newer Browsers. 33
Chapter 4: Applying Conditional Comments . 57
Chapter 5: Scripting JavaScript and Document Object Model Hacks. 71
Chapter 6: Coding Server-Side Solutions . 87
Chapter 7: Enhancing Graphics and Media with CSS 99
Chapter 8: Maintaining Accessibility with CSS . 121
Chapter 9: Integrated CSS Hack Layouts . 131
Chapter 10: Building Navigation Systems . 159
Chapter 11: Troubleshooting CSS . 177
Chapter 12: Implementing CSS Hacks in Dreamweaver. 191
Chapter 13: Creating CSS-Savvy Dreamweaver Templates 219

Appendix A: Resources . 235
Appendix B: CSS Hacks and Filters Charts . 243

Index . 249

02_579851 ftoc.qxd 5/4/05 11:05 PM Page ix

TEAM LinG

02_579851 ftoc.qxd 5/4/05 11:05 PM Page x

TEAM LinG

Contents
Acknowledgments . xvii

Introduction . xix

Chapter 1: Why Hack CSS? . 1
The Cascading Style Sheets Promise . 1

Separate Presentation from Content . 2
Flexible Design Model . 2
Faster Loading Times . 3
Easy, Instant Maintenance . 3
Portability. 3
Advanced Design Possibilities . 3
Enhanced User Control . 4
Accessibility . 5

Why CSS Is Broken . 6
To Hack or Not to Hack . 8

Chapter 2: Filtering CSS for Older Browsers 11
Hacking Netscape 4 . 11

Linking vs. Importing Style Sheets . 13
Hiding Individual Rules from Netscape 4 14
Dealing with Fonts Properly . 18
Adjusting Margins and Borders. 21
Working Through Background Problems. 23
Correcting List Issues . 25
Handling Table Discrepancies . 26

Fixing Internet Explorer 3 and 4 . 27
Hiding Style Sheets from Internet Explorer 3 and 4 27
Concealing Individual Rules . 28
Adjusting for Table Properties . 29
Font Problems to Avoid. 29
Making Margins and Padding Useful. 30

02_579851 ftoc.qxd 5/4/05 11:05 PM Page xi

TEAM LinG

Chapter 3: Hiding CSS from Newer Browsers 33
Controlling Internet Explorer 5 and Above . 34

Managing CSS in Internet Explorer 5.x for Mac. 34
Balancing Internet Explorer 5, 5.5, and 6 . 37

Taming Gecko-Based Browsers . 48
CSS Hack Strategies . 49
Float Clearing with the :after Pseudo-Element 49

Filtering Out Safari . 51
The Lang Pseudo-Class Hack . 52
The Exclamation Mark Hack. 52

Handling Opera Problems. 53
Be Nice to Opera Hack . 53
Media Queries Hack . 54
Applying the Owen Hack. 56

Chapter 4: Applying Conditional Comments 57
About Conditional Comments . 57
Showing/Hiding Styles from Individual Versions 59
Showing or Hiding a Range of Versions. 60
Working with Non–Internet Explorer Browsers 62
Practical Applications of Conditional Comments 63

Three-Pixel Gap . 63
Italics Float Bug. 65
First Letter Bug . 67

Chapter 5: Scripting JavaScript and Document Object Model Hacks . . . 71
Dynamically Loading Style Sheets . 72

Determining Browsers with JavaScript Objects 72
Reading the userAgent Property . 73
Styling for a Detected Browser . 75

Switching Style Sheets with the DOM . 76
Style Value Switching for Interactivity . 81

Chapter 6: Coding Server-Side Solutions 87
Styling with ASP . 87
Controlling CSS with PHP . 91
ColdFusion Integration with CSS . 94

xii Contents

02_579851 ftoc.qxd 5/4/05 11:05 PM Page xii

TEAM LinG

Chapter 7: Enhancing Graphics and Media with CSS 99
Styling Images for Controlled Layout . 99
Replacing Styles with Images Automatically. 103
Scaling Images for Accessibility . 105
Making Rounded Rectangles with CSS . 106
Adding Drop-Shadow Styles. 112
Extending PNG Support. 115
Implementing Flash Replacement . 117

Chapter 8: Maintaining Accessibility with CSS 121
Setting Up for Accessible Text . 122
Handling Print Media Style Sheets . 125

Attaching a Print Media Style Sheet . 125
Defining General Properties. 126
Correcting Print-Specific Problems . 127

Adding CSS Hacks for Screen Readers . 128

Chapter 9: Integrated CSS Hack Layouts 131
Positioning with CSS. 131

Position: Relative . 132
Position: Absolute . 135
Position: Fixed . 138

Managing the Float . 142
Crafting Two- and Three-Column Designs . 146

Two-Column Layouts . 146
Three-Column Layouts . 151

Placing Footers Correctly. 154
Centering Page Layouts . 156

Chapter 10: Building Navigation Systems 159
Designing CSS Navigation Bars . 159

Vertical Navigation . 160
Horizontal Navigation . 164

Creating Multilevel Drop-Downs . 166
Crafting CSS Tabs . 170

xiiiContents

02_579851 ftoc.qxd 5/4/05 11:05 PM Page xiii

TEAM LinG

Chapter 11: Troubleshooting CSS . 177
Avoiding the Flash of Unstyled Content. 177
Debugging CSS Problems . 179
CSS Usual Suspects Checklist . 182

Verifying Server-Side Setup . 182
Approaching Document-Level Issues . 182
Avoiding General CSS Errors . 185
Targeting Design Problems . 188

Chapter 12: Implementing CSS Hacks in Dreamweaver. 191
Working with CSS in Dreamweaver . 191

Setting Up CSS Preferences . 192
Attaching External Style Sheets . 196
Defining CSS Styles . 198
Applying Style Rules . 206
Modifying Styles. 208
Using the CSS Relevant Panel. 211
Working with Design Time Style Sheets 212

Using Snippets for CSS Hacks . 214

Chapter 13: Creating CSS-Savvy Dreamweaver Templates 219
Setting Up Basic Templates for CSS . 220
Embedding Design Time CSS Style Switching 222
Adjusting Layout Styles via Template Parameters 225
Constructing Contribute-Friendly CSS Designs 229

CSS Basics in Contribute . 230
Limiting Available Classes. 231
Applying Template Features in Contribute 232

Appendix A: Resources . 235
General CSS Sites . 235
CSS Hack Information. 236
CSS and JavaScript . 237
Server-Side CSS . 238
CSS and Graphics . 238
CSS and Accessibility . 239

xiv Contents

02_579851 ftoc.qxd 5/4/05 11:05 PM Page xiv

TEAM LinG

CSS Layouts . 240
CSS in Navigation . 241
CSS Example Sites . 242

Appendix B: CSS Hacks and Filters Charts 243
Hiding CSS from a Browser . 243
Revealing CSS to a Browser . 246

Index . 249

xvContents

02_579851 ftoc.qxd 5/4/05 11:05 PM Page xv

TEAM LinG

02_579851 ftoc.qxd 5/4/05 11:05 PM Page xvi

TEAM LinG

Acknowledgments
I’d like to thank Wiley’s Chris Webb for first opening the door to this book and then encour-
aging the idea and execution. I also owe Chris for bringing in Kevin Shafer as editor. Kevin has
been a terrific guide and has helped focus the work time and again. My greatest debt of gratitude
goes out to Mark Fletcher, who, as Technical Editor, has shared his enthusiasm, encyclopedic
knowledge, and real-world experience since the project’s inception. Throughout the writing
process, Mark has generously pointed out resources, breaking trends, and hard-earned insights.
I feel honored to have Mark by my side and look forward to working together with him in the
near future.

03_579851 flast.qxd 5/4/05 10:50 PM Page xvii

TEAM LinG

03_579851 flast.qxd 5/4/05 10:50 PM Page xviii

TEAM LinG

Introduction
I’ll be upfront about it: I wrote this book for myself. I was working on one too many sites with
impossible browser-spanning specs while trying to harness the demanding CSS requirements,
both self- and client-driven. While I found a wealth of information about CSS hacks and filters
on the Web, it was overwhelming. I wanted a central resource that I could rely on to quickly
give me the solutions I needed with the deeper understanding I craved. I couldn’t find it in any
one place—so I wrote it.

My hope, and fervent belief, is that there are a lot of designers in the same boat. CSS has come
on in a whirlwind and the reality of the browser situation demands that you deal with it on its
own terms or get blown away. There are, of course, numerous ways to handle CSS display issues.
Rather than try to force one method to the exclusion of others, this book offers the full gamut
of techniques. For example, if you don’t feel comfortable applying multiple hacks to adapt a
single style sheet, you can use any of the JavaScript or server-side methods for serving the right
CSS file to the right browser. I did, however, attempt to ensure that whatever suggestions I made
validated; where there was no recourse, the invalid technique is noted as such.

CSS Hacks and Filters follows, roughly, an old-to-new, simple-to-complex structure. The oldest
browsers CSS designers are still struggling with are covered first, followed by more up-to-date,
standards-based browsers. Internet Explorer’s proprietary conditional comment technology is
important enough (given Internet Explorer’s continued prevalence and CSS bugs) to deserve a
chapter by itself. In all these early chapters, I tackled real-world CSS problems and explained
how the hacks covered can solve them. Later chapters explore the intersection of CSS with other
Web technologies such as JavaScript, the Document Object Model (DOM), and application
servers. Graphics and other visual media weigh heavily in the modern Web, and manipulating
them properly with CSS is the subject of Chapter 7. Accessibility is a well-deserved hot button
and techniques for applying CSS in a responsible fashion are explored in Chapter 8.

The latter portion of the book is intended to offer practical examples for designers trying to
put it all together—and keep it there. You’ll find separate chapters on CSS layouts, navigations
systems, and debugging. My ongoing work with Dreamweaver persuaded me to present a couple
of additional real-world chapters to address the use of CSS in Macromedia’s world-class and
widely used authoring tool: one chapter is on core CSS use in Dreamweaver and the other con-
cerns Dreamweaver templates and CSS. This “getting-it-done” attitude is carried over into the
two appendixes. The resources listed in Appendix A should give you a full spectrum of jumping-
off places, and the tables in Appendix B are intended to help you find a safe place to land.

Knowing the passionate nature of the CSS community, I fully expect to get an earful or two.
If you’d like to get in touch with me to share an opinion or ask a question, please feel free to
write me at jlowery@idest.com. You’ll find more book-related information on my site at
www.idest.com/csshacks/.

03_579851 flast.qxd 5/4/05 10:50 PM Page xix

TEAM LinG

03_579851 flast.qxd 5/4/05 10:50 PM Page xx

TEAM LinG

Why Hack CSS?

The theory of Cascading Style Sheets (CSS) is a means to an end: bet-
ter, more efficient Web site design. In the real world, however, CSS
does not provide a perfect, clear-cut path to that goal. To achieve the

promise of CSS, working designers have employed a series of workarounds
known collectively as hacks. At the most basic level, a CSS hack is a modifi-
cation to the standard CSS code. Like any deviation from the norm, the use
of CSS hacks has both its supporters and detractors: Some designers feel
CSS hacks are an absolute necessity and others are fervently opposed to
them.

To figure out why the Web design community is divided over CSS hacks—
and which camp you should be in—you’ll need a little background on the
emergence of CSS.

The Cascading Style Sheets Promise
When work was begun in 1995 on the first CSS specification, the Web was
one giant kludge. Hypertext Markup Language (HTML) tags were being
pressed into service to handle chores they were never intended for. Tables,
for example, meant to contain structured data were largely used for layout.
But missapplied tags were the least of the designer’s woes when it came to
working with HTML.

HTML is perfectly suited for its original design: to represent scientific
papers and other documents that adhered to a highly structured format. A
structured document is formatted with headings and, where necessary, sub-
headings, for all titles along with standard paragraphs for all body text.
HTML hit a major stumbling block when the Internet was eclipsed by the
World Wide Web—and graphic design came to the Web.

Designers used every trick in the book, and invented quite a few along the
way, to reproduce their designs with HTML. Presentation tags, such as
font, were inextricably entwined into the content—which meant sitewide
style changes required a Herculean effort. To alter the typeface for all of a
Web site’s
primary headings, you had to either modify every single tag instance by
hand or cross your fingers and perform an all-encompassing (and terrifying)
search-and-replace operation. If you wanted to repurpose Web content for
print or any other media, you had one choice and one choice only: redesign
the site, page-by-page. Pages were top-heavy with dense mark-up code: a

˛ The Cascading Style
Sheets Promise

˛ Why CSS Is Broken

˛ To Hack or Not to
Hack

chapter

in this chapter

04_579851 ch01.qxd 5/4/05 11:09 PM Page 1

TEAM LinG

2 CSS Hacks and Filters: Making Cascading Style Sheets Work

real structural jungle that designers had to hack through to make the smallest change. Moreover,
any hope of HTML working with assistive technologies such as screen readers was completely
off the table.

The original drafters of the CSS specification hoped to cut away all the clutter brought by
styling Web pages with HTML. CSS was conceived with numerous key advantages in mind:

� Separate presentation from content

� Flexible design model

� Faster loading times

� Easy, instant maintenance

� Portability

� Advanced design possibilities

� Enhanced user control

� Accessibility

The following sections examine each of these in detail so you grasp completely what CSS
can do.

Separate Presentation from Content
The first and foremost mission was to disconnect the tight stranglehold that HTML style tags
brought to a Web page. By isolating the control of a page’s look-and-feel from the content, a
clear pathway to building structured pages opens up where you can still get the design you
want. Additionally, both content and design benefit in terms of accessibility. Search engines can
get at the content easier for indexing, while designers have hands-on control of their presenta-
tion. The core concept of separating presentation from content leads to many other benefits of
the CSS model.

Flexible Design Model
Even with the most basic implementation of text styling, CSS runs rings around HTML.
Whereas font tags are limited to seven browser-dependent sizes, CSS offers both absolute,
number-based systems in the measurement unit of your choice (points, pixels, ems, percent-
ages, and many others) and relative keyword-based systems (that is, small, medium, large,
smaller, larger, and so on). Design considerations common in print publishing (such as line
spacing) are impossible in HTML but a snap in CSS.

Aside from the specific properties available, the CSS methodology of assigning those proper-
ties is wonderfully robust. With CSS, you can re-style existing HTML tags or create custom
styles in a variety of ways with classes, IDs, and through selectors. Selectors (whether as com-
mon as a descendent selector or as rare as adjacent-sibling selectors) encourage structural Web
coding while delivering enhanced design control.

04_579851 ch01.qxd 5/4/05 11:09 PM Page 2

TEAM LinG

3Chapter 1 — Why Hack CSS?

Faster Loading Times
To the casual Internet user, a Web page is completely virtual with no real substance or weight.
Web designers, however, are very aware of the weight of their pages; the more code that’s in a
page, the heavier it is and the longer it takes to load. For example, here’s the minimum code it
takes to place a sentence on the page in the common HTML container, a font tag:

<table>
<tr>
<td>
Welcome to my world.

</td>
</tr>

</table>

Now, here’s the same content in the standard CSS container, a div tag:

<div>
Welcome to my world.

</div>

Multiply that doubled-difference many, many times for a single page—and then again for an
entire Web site—and you have some idea of CSS’s edge in speed.

Easy, Instant Maintenance
As noted earlier, it’s a nightmare to change an HTML style across a site because styles are all
applied at the lowest level, the tag. Not only must all pages with all the styles be altered one at
a time, each page must be re-saved and then re-put to the server. With well-structured CSS,
on the other hand, your styles are kept in a separate file where they can be modified in any text
editor. Once published, a style change is immediately seen by anyone who views an affected
page within the site.

Portability
Although the Internet may at times seem pervasive, it’s just one of many media. For example,
many sites strive to have their Web pages available for print as well. With HTML-styled pages,
the only viable route is to redesign the page with print in mind—a terrible chore to do it once
and a never-ending time-suck if the site is updated frequently. CSS turns the HTML model on
its head and allows you to simply specify a different style sheet for print—and, if desired, one for
speech synthesizers, projectors, and hand-held devices, among others—and you’re done.

Advanced Design Possibilities
As defined, CSS is highly interactive and throws open the door to a multitude of design
options. Just a few of the advanced text options were mentioned earlier; in addition to
advanced sizing and line spacing, CSS also provides more robust alignment and far more spe-
cific margin and padding options. Text is not the only element to gain a power surge under
CSS. The capability to control the position and tiling of background images (see Figure 1-1)
is reason enough to use CSS in and of itself.

04_579851 ch01.qxd 5/4/05 11:09 PM Page 3

TEAM LinG

4 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 1-1: With CSS image control, you can place a single, non-tiling image like this
control panel in the background, precisely positioned.

Another key element in the CSS toolchest is the div tag, commonly referred to in Web
authoring programs like Macromedia Dreamweaver as layers. Content within a div tag can
be placed anywhere on a page or made to flow in the context of a document. A div tag, like
span, is a non-semantic tag that is used as a generic container; div tags are nothing more
than block elements that enable you to mark up broad sections of a document. From a dynamic
point of view, div tags can be programmatically hidden, revealed, change style, and even move
across (or off) the page.

Enhanced User Control
While CSS provides a great deal of design-time flexibility, it also opens up the run-time
options for Web page visitors. The entire notion of the cascade in Cascading Style Sheets
stems from the originators’ desire to blend the designer’s style sheet with the user’s. The end
result is a cascade of several style sheets all coming together to render the page optimally. Some
CSS-savvy designers have taken this a step further and designed their sites with multiple CSS
styles attached to each page. Modern browsers include a style switching command that lists
available style sheets.

04_579851 ch01.qxd 5/4/05 11:09 PM Page 4

TEAM LinG

5Chapter 1 — Why Hack CSS?

One of the most commonly adjusted user settings is font size. The smallish text that looks
good on the design spec may be too tiny to be read by a particular visitor—and that’s okay, if
the page is styled properly with CSS and the text can expand to a readable size, as shown in
Figure 1-2. When designed correctly, the text grows and the layout flows: site designer, site vis-
itor, and site owner are all happy.

Accessibility
Adjustable text size is just one aspect of a vital trend in Web design: accessibility. Fueled by the
Federal Rehabilitation Act, a U.S. law mandating that all government-run Web sites follow the
guidelines established in Section 508 of that act, accessibility is on every designer’s watch list.
The very core of Cascading Style Sheets—separating presentation from content—makes the
content within the pages more available.

This openess, or accessibility, is immediately noticeable when you listen to software screen
readers. Screen readers are a crucial assistive technology. If you ever want to demonstrate the
benefit of CSS, just point a screen reader–enabled browser to a page in a CSS-based layout—
and then visit the same page in a table-based layout, especially those with deeply nested tables.
You won’t believe your ears when you hear what a difference CSS makes.

FIGURE 1-2: Define your font sizes correctly with CSS, and text is easily rescaled with no
sacrifice of design integrity.

04_579851 ch01.qxd 5/4/05 11:09 PM Page 5

TEAM LinG

6 CSS Hacks and Filters: Making Cascading Style Sheets Work

One CSS 2.1 specification goes to the next level in aiding the visually impaired to browse the
Web by carving out a new media type: speech. Speech is a separate media type (just like print or
hand-held devices) that allows designers to control how CSS classes and other selectors sound,
just like the screen media type controls how CSS selectors look. Support for the speech media
type is pretty much nonexistent at this time, but a much fuller implementation already on the
table for CSS 3 bodes well for this much-needed functionality.

Why CSS Is Broken
Cascading Style Sheets certainly were intended to be the Web designer’s promised land.
Unfortunately, the first time you attempt to implement a CSS solution for a site, you’ll quickly
realize that the promise has not been kept.

How bad can it be? Take a look at a typical CSS problem shown in Figures 1-3 and 1-4. Figure
1-3 displays the page as designed in Macromedia Dreamweaver MX 2004, whereas Figure 1-4
renders the same page in Internet Explorer 6. Look carefully at the model’s head in both figures
and you’ll see that in Internet Explorer, the top of her head has come off and is shifted to the
left by a number of pixels. What’s happening is that the design requires that the head image be
sliced and placed in two CSS-styled div tags and Internet Explorer is adding several pixels to
the bottom div. It’s enough to make CSS designers lose their minds—if not their heads.

FIGURE 1-3: Dreamweaver gets it right, and the model’s head
looks as it should.

04_579851 ch01.qxd 5/4/05 11:09 PM Page 6

TEAM LinG

7Chapter 1 — Why Hack CSS?

FIGURE 1-4: Internet Explorer 6 is flawed when rendering floated
div tags—and the top of the model’s head is noticeably off.

You can find two different approaches to fixing the Internet Explorer pixel shift in Chapter 3,
“Hiding CSS from Newer Browsers,” and Chapter 4, “Applying Conditional Comments.”

So, what went wrong with CSS? Although some errors have appeared in the CSS recommen-
dations themselves, the major problem has been spotty, inconsistent, or downright wrong
browser implementation. The reasons for the browser inconsistencies are as varied as the
browsers themselves. For example, one of the biggest ongoing CSS headaches has been work-
ing with Netscape 4.x browsers. The primary problem with this version was one of timing: the
CSS recommendations were finalized while Netscape 4 was in the final stages of its develop-
ment cycle. Consequently, only a fraction of CSS specifications were enabled—and not all of
them well.

Even the same browser version from the same company can differ wildly. Take, for example,
Internet Explorer 5. On the PC, Internet Explorer 5 supported much larger portions of the
CSS specification than ever before. When Internet Explorer 5 was released for the Macintosh,
the design community was stunned to see that CSS support was even better—not just from
Netscape’s latest release, but also from the PC version of the same browser. This development
further complicated life for the Web designer, who often developed sites on a Macintosh, only
to see them break on the PC.

The fact that CSS works as well as it does is pretty amazing. Think of it: You’re working with a
standard developed over a long period of time by many large groups of independent thinkers,
which is then implemented by another assortment of organizations (of varying resources and
expertise) who are expected to create identical results from within their own. It’s like handing
the blueprints of the Taj Mahal to 10 architects in 10 different countries with 10 different cul-
tures and the full spectrum of economic standing and material and saying, “Go for it.”

04_579851 ch01.qxd 5/4/05 11:09 PM Page 7

TEAM LinG

8 CSS Hacks and Filters: Making Cascading Style Sheets Work

Naturally, there are going to be differences in design, as well as omissions and unrequested and
market-confusing enhancements.

In recent years, the latest generation of browsers have been focused squarely on getting CSS
right. Browsers from Mozilla.org (including Firefox and Mozilla) along with the latest releases
of Apple’s Safari browser have made tremendous strides in correctly interpreting the recom-
mendations of the World Wide Web Consortium (W3C). And yet, they are all still rife with
inconsistencies and contradictory behavior. To some, the details of their differences are fairly
minor, but to designers with a perfectionist eye and a mandate to build universally accessible
Web sites, details matter.

To Hack or Not to Hack
So, the situation, in brief, is this: Web designers have in their hands a wonderful technology with
loads of benefits across the board, but it doesn’t work as well as it should. Or rather, CSS doesn’t
work as well as it could—with a little help. And help is available, an amazing amount of help, in
fact, in the form of CSS hacks and filters uncovered by a legion of working Web designers.

What exactly is a CSS hack? Typically, a CSS hack is a slight modification to the CSS or
HTML code developed to work around a particular CSS problem on a specific browser. Many
CSS hacks act as filters, hiding one or more styles from a problematic browser. For example,
suppose you have a style sheet that includes an absolutely positioned div area on the right
edge of the screen. Unfortunately, Internet Explorer 5.x on the Mac doesn’t render this prop-
erly and, as shown in Figure 1-5, an unnecessary and unwanted scroll bar appears at the bottom
of the browser window. You can fix this problem in Internet Explorer Mac by declaring a nega-
tive right margin for the div style—which, of course, breaks the page in all other browsers. To
ensure the design of the page looks the way you want it to when viewed with this browser ver-
sion and all others, you must first set the style rule so that it works in Internet Explorer 5 Mac,
as shown here:

div#rightEdge {
position:absolute;
top: 20px; right: 10px;
margin: 0 -10px 0 0;

}

Next, you need to reset to properties so the area renders correctly for all browsers, but is hidden
from the problem browser, as shown here:

/* hide from IE mac */
div#rightEdge {
right: 0;
margin: 0
} /* reveal to IE Mac */

The hack is contained within the two comments surrounding the style declaration. The key is
escaping the end of the first comment with a backslash, */, which makes Internet Explorer
Macintosh disregard the rest of the style until the second closing comment delimiter, */, is
encountered. In this case, two CSS-style comment tags (one slightly altered) comprise the hack.

04_579851 ch01.qxd 5/4/05 11:09 PM Page 8

TEAM LinG

9Chapter 1 — Why Hack CSS?

FIGURE 1-5: When a certain type of style is defined, the unnecessary
scroll bar at the bottom of the browser window appears in
Internet Explorer 5 on the Macintosh, but no other browser.

A school of CSS usage experts has just been outraged. According to them, the change just
made to this code is, on all levels, wrong. Coding a CSS hack goes against the very nature of
a W3C-recommended standard and should be considered an affront to Web designers every-
where. The faithful application of standards (whether they govern XHTML, CSS, or any
other) is absolute. To code in any other way diminishes the standard and concedes a victory to
the chaotic nature of the Web standards that they are created to battle.

I regard myself as a practical Web designer and, to me, this argument against CSS hacks is
purely academic. A good friend of mine, Massimo Foti (known in Dreamweaver circles as a
“developer’s developer”) once said, “Web standards are suggestions, not religion.” I think he’s
right.

Other arguments against the user of CSS hacks are more meaningful. Some coders point out that
such hacks may not be forward-compatible and may break in the next round of browser releases. I
agree that such an event is a possibility, but I’m not at all sure it’s a certainty. Moreover, the very
nature of external style sheets means that correcting any such issues in the future is a relatively
centralized action: You’re not updating hundreds of pages in a site, you’re modifying one or two
style sheets.

04_579851 ch01.qxd 5/4/05 11:09 PM Page 9

TEAM LinG

10 CSS Hacks and Filters: Making Cascading Style Sheets Work

Consider this real-world story. A designer friend asked me to consult on a Web site redesign
for a major metropolitan public library. She’s an excellent designer, but new to CSS, especially
when it comes to layout (a client requirement for this job). The mandate was to use CSS layout
techniques coupled with full compliance with Section 508.

“Not a problem,” I said. “What are the target browsers?”

The answer was, as you might expect, “Everything.”

It seems that although the vast majority of people outside of the library system used Internet
Explorer 6, all the computers inside the library branches throughout the city used Netscape 4.
Budget cut after budget cut had prevented an administrative rollout of a more modern browser.
To satisfy all of the client’s bottom-line goals (CSS layout and full cross-browser compatibil-
ity), the only recourse was to employ CSS hacks.

Designers are often perfectionists and, given that someone else is paying for their work, often
need to be. The client isn’t (and shouldn’t be) concerned with the ins and outs of CSS. That’s
not the client’s responsibility; that’s why the client hired you, the designer. Clients want a Web
site designer. They don’t want a Web site design that charges according to who is looking at it
on what browser or operating system.

Learning and implementing CSS is no trivial task. It takes a great deal of practice, study, and
application. After struggling up the learning curve and designing their first CSS-based site,
many designers rightfully say, “You mean to tell me that after all that work, it still isn’t right?”

Complications in applying CSS are, in essence, a fact of life. Software engineers often shorten
the phrase “fact of life” to FOL when referring to an unchangeable condition. Some bugs can
be fixed, while others are FOL. The implication is, of course, that when some aspect of a tech-
nology is FOL, you’re SOL.

Whether or not you’re incorporating CSS hacks is a choice every Web designer must make. For
me, CSS hacks are a FOL—and they get the job done. To hack or not to hack: in a perfect
world, no; in the real world, yes.

04_579851 ch01.qxd 5/4/05 11:09 PM Page 10

TEAM LinG

Filtering CSS for
Older Browsers

In the spring of 2001, just after the introduction of Internet Explorer 6
and with the Mozilla project well under way, I made a complete fool of
myself—in public, no less. I was giving a Dreamweaver seminar at a con-

ference before a large group of developers and came to the subject of
browser compatibility. Based on the stats I had garnered from a global Web
site (thecounter.com), I announced that, with less than 7% market share,
Netscape 4 was dead and developers didn’t need to design for it anymore.

A member of the audience raised his hand and said, “That’s just not true.”
He explained that his clientele was based in the medical industry and “...
doctors never upgrade their browsers.” His stats showed that more than 20
percent of his visitors were using some version of Netscape 4. For his sites,
this browser was—and may still be—very much a present-day requirement.

Although certain browsers may be long gone from the mainstream, if visi-
tors to your client’s site are using them, you must account for those browser
versions in your design. For most clients, however, this does not mean that
your sites have to appear pixel-perfect across all browsers. If that is the case,
and you are supporting the oldest browsers, you’d be better off throwing out
Cascading Style Sheets altogether.

The majority of clients understand the rapid pace of technology and value
the benefits that CSS brings to the table. Your primary goal should be to
degrade your design gracefully; if a visitor browses the site with an older
browser, no errors should occur and the content should all be accessible.

Of the browsers covered in this chapter, you’re far more likely to run into
Netscape 4. For whatever reason, that browser remains much more preva-
lent than either Internet Explorer 3 or 4. Should you design with any or all
of these browsers in mind? The deciding factor, of course, is what your
client needs.

Hacking Netscape 4
Ever heard the saying, “The road to hell is paved with good intentions”?
Netscape engineers were filled with good intentions when they tried to
incorporate the then recently sanctioned CSS 1 functionality into version 4
of their browser. Without enough time to fully implement the specification,

˛ Hacking Netscape 4

˛ Fixing Internet
Explorer 3 and 4

chapter

in this chapter

05_579851 ch02.qxd 5/4/05 10:54 PM Page 11

TEAM LinG

12 CSS Hacks and Filters: Making Cascading Style Sheets Work

Netscape 4 is a hodgepodge of fully supported, partially functioning, and totally broken CSS
rules. What initially appeared to be a designer’s godsend turned out to be an ongoing night-
mare.

Only a few CSS properties are fully supported in Netscape 4. Careful use of the color property
as well as margins, background-color, and background-image on the body tag leads to
good results in this browser. Certain font properties (font-families, non-proportional
font-sizes, font-weight) applied to selectors are properly rendered. Likewise text-
indent and text-align are handled well.

CSS properties not supported at all are numerous and all over the map:

� background-attachment

� background-position

� background-repeat

� border-top

� border-left

� border-bottom

� border-right

� display (except display:none)

� font-variant

� letter-spacing

� list-style-image

� list-style-position

� vertical-align

� word-spacing

� white-space:nowrap

� !important

� @import

� a:hover

� :first-line

� :first-letter

You’ll also find that the vast majority of CSS selectors do not work in Netscape 4. Only class
selectors work as expected; ID selectors function correctly only when formatted like #yourID,
but not when combined with a class or tag (that is, div#yourID).

How bad can it be? Take a look at Figure 2-1 to see a page that renders fine in every modern
browser except Netscape 4. The jumbled text is caused by misaligned div tags, while the over-
lay of text and image comes from Netscape’s non-support of the background-position
property.

The focus of this section is on areas where CSS causes problems in Netscape 4 and can be fixed
or worked around. The primary trouble spots include the following:

� Fonts—Font properties are not inherited; headings with adjacent font-size grow
incorrectly; font-weight interferes with <bold> and tags; improper
application of color displays text in a vivid green.

� Margins and Borders—Block elements on top and bottom margins work incorrectly;
line-height use causes page feeds and hides parts of images; proper border syntax
required; borders applied to inline elements result in browser crash.

� Background—Background color not completed between element and border; positioned
backgrounds mislocated; color set for background not visible behind anchor tags; back-
ground image and color disappears on positioned elements.

05_579851 ch02.qxd 5/4/05 10:54 PM Page 12

TEAM LinG

13Chapter 2 — Filtering CSS for Older Browsers

FIGURE 2-1: This nightmare of a page is the result of viewing a standards-compliant page
in Netscape 4.

� Lists—Styles only affect bullet and not the text; list-style-type shows wrong char-
acter; applying margins or padding shows bullet intentionally hidden.

� Table—Neither table nor tr tags are supported; margin, padding, and border don’t
work correctly on any table element.

There are two solutions for handling Netscape 4 issues. The first method is to use two style
sheets: one for Netscape 4 and another for all the other more modern browsers. You’ll need to
attach your style sheets in a particular manner to take advantage of this technique. The other
strategy is to use a single style sheet, but selectively hide problematic CSS style rules from
Netscape 4.

Linking vs. Importing Style Sheets
Believe it or not, there is a silver lining waiting in Netscape 4’s lack of support of key CSS con-
cepts. Unlike the rest of modern browsers (including Internet Explorer 4 and above, Netscape 6
and higher, all Mozilla-based browsers, Opera 3.6 and higher, and Safari), Netscape 4 does not
recognize the @import method for attaching an external style sheet. To include an external
style sheet so that it is readable by Netscape 4 (and all other browsers), use the link syntax:

<link href=”mainstyleNS.css” rel=”stylesheet” type=”text/css”>

05_579851 ch02.qxd 5/4/05 10:54 PM Page 13

TEAM LinG

14 CSS Hacks and Filters: Making Cascading Style Sheets Work

The other approach (readable by all other browsers except Netscape 4) is to attach a style sheet
using @import:

<style type=”text/css”>
<!--
@import url(“mainstyle.css”);
-->
</style>

To assign the proper styles to the right browser, these two techniques are used together to refer
to two different style sheets:

<link href=”mainstyleNS.css” rel=”stylesheet” type=”text/css”>
<style type=”text/css”>
<!--
@import url(“mainstyle.css”);
-->
</style>

The link first, @import second sequence is vital. If you mistakenly define the @import rule
first and then follow it with the link tag, the styles intended for just Netscape will be applied
to all browsers—definitely not the way to go.

There’s one more key benefit to taking advantage of the lack of support for @import—the equally
problematic Internet Explorer 3 also only supports the link method of attaching a style sheet.

It’s important to realize that for the multiple-sheet method to be successful, you must include
the same selectors and properties in both sheets. The properties may have different values, but
if you want the imported sheet to override the styles established in the linked sheet, both selec-
tors and properties must be identical.

There’s another reason to make sure that your sequence is link first, @import second.
Reversing the sequence can cause your page to appear unstyled in later versions of Internet
Explorer for a brief second; this phenomenon is called Flash of Unstyled Content and is covered
in depth in Chapter 11, “Troubleshooting CSS.”

Hiding Individual Rules from Netscape 4
Some designers prefer not to maintain multiple style sheets, but find it more manageable to
merge Netscape and non-Netscape styles in a single sheet. Once again, Netscape omissions
come to the struggling designer’s rescue. A slew of methods exist for hiding individual rules
from this older browser version; there’s even one that conceals the CSS from every browser but
Netscape 4. The four techniques covered in this section work equally well and have the added
advantage of being valid for a CSS.

Netscape 4 Comment Hack
The first CSS hack covered is good for hiding multiple style rules from Netscape 4. It’s known
as the Netscape 4 comment hack. To use it, you’ll need to be familiar with how a comment is
coded in CSS. The following code in a style sheet or within a style tag is ignored by browsers:

/* CSS comments go here... */

05_579851 ch02.qxd 5/4/05 10:54 PM Page 14

TEAM LinG

15Chapter 2 — Filtering CSS for Older Browsers

Theoretically, you could put as much (or as little) text as you like between the opening /* and
the closing */ and the enclosed characters will be skipped over by the browser. Netscape 4,
however, has a problem with the following comment:

/*/*/

All other browsers recognize that code as a CSS comment containing a single slash mark, but
Netscape 4 sees the internal slash as an escape character and, thus, does not recognize the clos-
ing of the comment tag. You need simply to add a second CSS comment to end the comment
as far as Netscape 4 is concerned. Consider the following CSS rules:

p {font-size: 18px; }
/* Start hiding from NS4 */
/*/*/
.para1 { font-weight: bold }
.para2 { font-weight: bold }
/* Resume showing to NS4 */
.para3 { font-weight: bold }

This produces the result shown in Figure 2-2. Both browsers pick up the p style rule that sets
the text to 18 pixels. Netscape 4, however (the top browser in the figure), does not bold the first
two paragraphs but only the third one where the para3 class is applied to the tag. Internet
Explorer 6, on the other hand, correctly interprets the /*/*/ code as a complete CSS com-
ment and picks up the bold declarations for all three classes defined. The key thing to remem-
ber here is that you always have to add another comment to the CSS styles to stop hiding the
code from Netscape 4.

FIGURE 2-2: The Netscape 4 comment hack is an effective way to hide
multiple CSS style rules.

05_579851 ch02.qxd 5/4/05 10:54 PM Page 15

TEAM LinG

16 CSS Hacks and Filters: Making Cascading Style Sheets Work

To my knowledge, only one modern browser has an adverse reaction to the Netscape 4 com-
ment hack: Opera 5. Unlike all other browsers, Opera 5 ignores the rule right after /*/*/ code.
Thus, in the code example, Opera 5 would not make para1 bold. To get around this, simply add
an empty style rule (one with no declaration) right after the opening section of the comment
hack, like this: /*/*/p{}. Be sure to check your logs for Opera 5 users before you start to worry
about this: Opera users tend to upgrade their browsers when new versions appear.

Netscape 4 Element ID Hack
Although the Netscape 4 comment hack is a good way to obscure multiple rules from Netscape,
there are simpler ways to hide a single CSS declaration. As noted earlier, Netscape 4 doesn’t
recognize descendent selectors that specify an element as the ancestor to an ID selector. For
example, this rule is recognized by Netscape 4:

#header p {
font-family: Verdana, Arial, Helvetica, sans-serif;

}

This one is not:

div#header p {
font-family: Verdana, Arial, Helvetica, sans-serif;

}

Typically, you would use the two declarations as a pair: one to declare a rule that Netscape 4
understands, immediately followed by a more specific rule intended for the other browsers that
Netscape 4 doesn’t understand. Here’s an example:

#content h1 { margin-bottom: -18px }
div#content h1 { margin-bottom: 0px }

#content p { margin-top: -18px }
div#content p { margin-top: 0px }

The first pair eliminates the bottom margin from the h1 tag for both Netscape and all other
browsers, and the second pair performs the same chore for the top margin of the p tag, previ-
ously sized to 18px. Figure 2-3 shows the matching output in Netscape 4 and Mozilla. In this
example, if the margin-bottom was not reset to 0 for other browsers, the heading and para-
graph text would overlap (this effect is shown later in Figure 2-7).

To a lesser extent, Netscape has the same problem with class selectors used in combination with
an ancestor selector. For example, you won’t get any stylings from this declaration in a Netscape
4.8 browser:

body.heads {
color: blue;

}

05_579851 ch02.qxd 5/4/05 10:54 PM Page 16

TEAM LinG

17Chapter 2 — Filtering CSS for Older Browsers

FIGURE 2-3: Effective use of the Netscape 4 Element ID hack gives
the desired result cross-browser.

Netscape 4 !important Hack
If you want to hide CSS from Netscape even more selectively than demonstrated with the pre-
vious hack, try the Netscape 4 !important hack. Modern browsers give any property marked
as !important a higher weight. Not only does Netscape 4 not recognize !important as a
useful keyword, it also disregards the property (but not the entire rule) it is attached to. For
example, consider this declaration:

.legalPhrase {
font-family: “Courier New”, Courier, mono;
font-weight: bold;
border: 1px solid red !important;

}
.legalPhrase {
border: 1px solid green;

}

Be cautious when applying !important—any such declared style prevents site visitors from
overriding styles via their user style sheet, a helpful step for accessibility purposes.

Here, only the border property in the first declaration is not applied in Netscape. The font will
still be monofaced and bold, but the border around the text will be green instead of red. All
other browsers would honor the !important keyword and present the border as red.

Excluding All Browsers Except Netscape 4
Sometimes you must travel the opposite route when hacking CSS. Rather than applying a
technique that hides a rule or property from Netscape 4, occasionally it’s better to hide the CSS
from all browsers except Netscape 4. A comment-based hack discovered by Fabrice Pascal does

05_579851 ch02.qxd 5/4/05 10:54 PM Page 17

TEAM LinG

18 CSS Hacks and Filters: Making Cascading Style Sheets Work

the job—almost. The hack is applied by Netscape 4 as well as the relatively obscure Opera 4
and 5 on Windows and Opera 5 on Mac.

The basic syntax is exemplified by this code:

body { color: black; }
#footer {
/*/*//*/ color:green; /* */

}

Amazingly enough, it still is acceptable by a CSS validator.

Assuming there’s no other CSS rule that targets the color property in the #footer ID, all
browsers (with the exception of Netscape 4 and the Opera versions listed previously) will color
the text in any element with the ID of #footer black. Netscape 4, however, paints it green.

Dealing with Fonts Properly
Working with fonts in Netscape 4 is like wielding a real double-edged sword. On one hand,
font properties are among the most widely supported in the browser; on the other, a number of
fundamental concepts typically used in conjunction with fonts are sorely lacking. If you’re not
aware of the problems, sooner or later you’re going to get cut.

Inheritance Concerns
Arguably the biggest overall issue with Netscape 4 concerns a key concept of Cascading Style
Sheets: inheritance. All CSS-savvy browsers provide inheritance support except Netscape 4. A
common technique practiced by CSS designers is to set the font-family property using the
body tag selector. With the expected inheritance quality, the font family chosen for the body
tag would be automatically applied to paragraphs, headings, and content in tables. Netscape
always ignores the property values that should be inherited when rendering content in tables
and, quirkily, sometimes when applied to other elements such as p, h1-h6, ol, ul, li, and
blockquote tags, among others.

One of the most common practices when it comes to designing with Netscape 4 in mind is to
explicitly define styles for selectors that rightfully should be covered by inheritance, but aren’t.
This technique is often used in conjunction with the multiple style sheets approach described
earlier in this chapter. For example, the style sheet intended for all browsers except Netscape 4
might have this declaration:

body {
font-family: Verdana, Arial, Helvetica, sans-serif;
color: #666666;

}

You can see for yourself in Figure 2-4 the kind of effect (or rather, non-effect) inheritance has in
Netscape 4. To achieve the desired result, the Netscape 4 style sheet would need a rule like this:

body, div, p, blockquote, ol, ul, dl, li, dt, dd, td {
font-family: Verdana, Arial, Helvetica, sans-serif;
color: #666666;

}

05_579851 ch02.qxd 5/4/05 10:54 PM Page 18

TEAM LinG

19Chapter 2 — Filtering CSS for Older Browsers

FIGURE 2-4: You’ll need to compensate for Netscape 4’s inability to
properly apply inheritance rules.

A related problem is found with the inherit value. When you apply the inherit value to
any property, the selector picks up the value of the same property applied to the parent ele-
ment. For example, suppose you have two rules:

#content { color: #999999; }
p { color: inherit; }

Normally (that is, in all browsers except Netscape 4), any paragraph tag within a div with an
ID of content will be the same color as its parent: a dark gray. With Netscape 4, however,
text in this position is colored a vibrant green (#00e000). The solution in this case is again to be
specific. For Netscape 4, you’ll need to include a rule like this:

#content p { color: #999999; }

According to the CSS specifications, the inherit value is available to any property. To avoid
unpredicatable results in Netscape 4, you’ll need to specify an expected value in your Netscape
style sheet wherever it is used in your standard style sheet.

Interfering font-weight
By default, the font-weight property for a browser page is normal—you’ll need to set it to
bold, lighter or a number value from 100 to 900 to see a difference. Some designers, how-
ever, see the need to specify the font-weight with a value of normal for the body tag or
other specific elements. This shouldn’t cause a problem and it doesn’t—in any browser but
Netscape 4, of course.

Suppose you have the following CSS declaration:

body { font-weight: normal; }

And suppose you have this HTML code:

<p>That is not the way of the world.</p>

05_579851 ch02.qxd 5/4/05 10:54 PM Page 19

TEAM LinG

20 CSS Hacks and Filters: Making Cascading Style Sheets Work

Every other browser properly bolds the text marked with the strong tag; Netscape 4, how-
ever, resets both strong and bold tags to a normal font-weight, effectively neutralizing
the tags. This aberration is clearly noticeable in Figure 2-5 when comparing the Netscape 4
output to that of Firefox.

FIGURE 2-5: The top browser, Firefox, shows the expected result,
whereas Netscape 4 improperly removes the bold formatting.

To restore the effects of your bold or strong tags when a parent element has expressly set
font-weight to normal, you must actively define the affected tags’ font-weight to either
bold or 900, like this:

bold, strong { font-weight: bold; }

Expanding Heading Tags
You can experience one of Netscape 4’s more spectacularly bizarre rendering effects by combin-
ing font-size and adjacent heading tags. What would you expect if you defined style rules
for three heading tags in this manner?

h1 { font-size: 2.00em; }
h2 { font-size: 1.75em; }
h3 { font-size: 1.50em; }

The headings should decrease in size—and do, even in Netscape 4, as long as you don’t place
the tags directly next to one another. As shown in Figure 2-6, the following HTML has some
very strange results, but again, only in Netscape 4:

<h1>Header 1</h1><h2>Header 2</h2><h3>Header 3</h3>

The way to avoid the problem has nothing to do with CSS—you have to adjust the HTML to
achieve the desired effect. Separate each header with a bit of white space, either a space or line
return.

05_579851 ch02.qxd 5/4/05 10:54 PM Page 20

TEAM LinG

21Chapter 2 — Filtering CSS for Older Browsers

FIGURE 2-6: Even the lack of a single space can cause bizarre sizes to appear in Netscape 4.

Adjusting Margins and Borders
When designers first move from formatting with HTML to styling with CSS, they tend to be
a little giddy over the complete control you gain over margins and borders. The ability to ban-
ish the automatic space between two headings or a heading and the first paragraph is greatly
relished. Unfortunately, what works for the rest of the world’s modern browsers doesn’t affect
Netscape 4—and what works in Netscape 4 is detrimental to all other browsers.

Normally, your style sheet includes two rules like these when you want to remove the space
between a heading and a sub-heading:

h1 { margin-bottom: 0; }
h2 { margin-top; 0; }

Zero margins for block elements are ignored in Netscape 4. To achieve the same effect, you
must use negative values:

h1 { margin-bottom: -20; }
h2 { margin-top; -20; }

05_579851 ch02.qxd 5/4/05 10:54 PM Page 21

TEAM LinG

22 CSS Hacks and Filters: Making Cascading Style Sheets Work

Such negative values in CSS rules would cause other browsers to overlap the text in the two
headings, as shown in Figure 2-7, where Netscape 4 is on top and Firefox is on the bottom.

FIGURE 2-7: When correcting CSS margin styles for Netscape 4,
you must also reapply the proper CSS to avoid impacting
standards-compliant browsers.

The solution here is to have it both ways. You may remember a similar example when the
Netscape 4 Element ID hack was discussed. In this case, the CSS style rules used are these:

#content h1 { margin-bottom: -20px }
div#content h1 { margin-bottom: 0px }

#content h2 { margin-top: -20px }
div#content h2 { margin-top: 0px }

Again, the sequence is vital here—you want to make sure that you set the value for the problem
browser (Netscape 4) before you reset it for every other browser.

Another striking problem emerges when you mix the body tag, the line-height property,
images, and Netscape 4. Declaring a line-height of any value for the body tag has the
potential to truncate images in Netscape 4 (see Figure 2-8). To avoid this problem you have to
refrain from applying line-height to the body tag; for this issue, it’s best to use a separate
style sheet for Netscape 4 and set line-height on p tags and other block elements.

Netscape 4’s CSS border implementation is a case of all or none. To display any borders in this
older browser, you’ll need to define your CSS rule to show all four sides. Other browsers have
the luxury of showing just the top and bottom border, or any other combination, but with
Netscape 4, it’s everything or nothing.

05_579851 ch02.qxd 5/4/05 10:54 PM Page 22

TEAM LinG

23Chapter 2 — Filtering CSS for Older Browsers

FIGURE 2-8: In a Netscape 4 style sheet, defining line-height declarations in the
body property has a disastrous effect on images.

Avoid the long-hand syntax when declaring borders with Netscape 4 in mind. Rather than this
syntax,

.boxedIn {
border-top: 1px solid #FF0000;
border-right: 1px solid #FF0000;
border-bottom: 1px solid #FF0000;
border-left: 1px solid #FF0000;

}

use the CSS shorthand method for Netscape 4:

.boxedIn { border:2px solid #000000; }

Unfortunately, this means that your border-creation techniques are severely limited in
Netscape 4.

Although I have not been able to replicate it, some designers have reported browser crashes
when Netscape 4 tries to render a border around an inline element.

Working Through Background Problems
Through CSS, designers have control over two aspects of a page’s background: color and
image. I’m sorry—but not surprised—to report that Netscape 4 has problems in both areas. In
general, color is handled better than image, although a fairly glaring error is present when you
attempt to combine a background color, border, and an absolutely positioned div tag. If you

05_579851 ch02.qxd 5/4/05 10:54 PM Page 23

TEAM LinG

24 CSS Hacks and Filters: Making Cascading Style Sheets Work

look at Figure 2-9, you’ll find two div tags. The top div uses standard syntax to create a back-
ground color:

background-color: #000099;

FIGURE 2-9: You’ll need to rely on a proprietary tag—layer-background-color—
to banish the gap between background color and border in Netscape 4.

The white background of the page is clearly visible between the div tag’s background color
and the surrounding border when viewed in Netscape 4. To remove that gap, you’ll need to
adopt the following proprietary syntax:

layer-background-color: #FF0000;

The layer-background-color property is useful only when applied to an absolutely posi-
tioned div tag. If you’re a Dreamweaver user, you’ll recognize the term “layer” as applied to a
div tag; this was originally a Netscape 4 conceit. Interestingly enough, although layer-
background-color is not a standard CSS property, it is supported in the marjority of mod-
ern browsers, including Internet Explorer 6, and Mozilla-based browsers; it will, however, not
validate.

With background images, the major failing of Netscape 4 is in its lack of support of back-
ground-position properties. Without these key properties, designers are limited to single
images placed in the upper-left corner of the browser window—a major setback. Say, for exam-
ple, you have a logo image that you want to center in a page like a watermark. The way to han-
dle this in CSS is to declare a style rule like the following:

body {
background-image: url(../../images/jay-ell_logo.jpg);
background-repeat: no-repeat;
background-position: center center;

}

05_579851 ch02.qxd 5/4/05 10:54 PM Page 24

TEAM LinG

25Chapter 2 — Filtering CSS for Older Browsers

Apply this same rule in both a more recent browser like Firefox and in Netscape 4 and you get
two wildly different results (see Figure 2-10). Firefox honors both the positioning and the
repeat values, whereas Netscape 4 manages to not repeat the graphic. It places the image
squarely in the upper-left corner.

FIGURE 2-10: Unless you provide an alternative image for Netscape 4, a CSS-centered image
will not be depicted as expected.

To emulate the background prowess enjoyed by more modern browsers, you’ll need to use a
single image and a lot of white space. One suggested technique is to create an alternative back-
ground image the dimensions of your expected browser window that centers the logo in the
background color. Any of the Netscape 4 hiding methods can be used to apply an alternative
image, but the catch here is the phrase “dimensions of your expected browser window.” Very
often, designers try to create fluid page layouts that adjust themselves according to the user’s
browser size. Locked layouts that demand a fixed window width and height are not very user-
friendly—but that’s, unfortuantely, what the alternative image technique demands.

Correcting List Issues
Ordered and unordered lists (more commonly referred to as “numbered” and “bulleted” lists)
are impossible to style in Netscape 4. Any style applied to the list item tag, li, only affects the
bullet and not the accompanying text, as is plainly visible in Figure 2-11.

05_579851 ch02.qxd 5/4/05 10:54 PM Page 25

TEAM LinG

26 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 2-11: Styles defined for a li tag are misapplied to
the bullet, but not the text of the list item.

Unfortunately, there’s not a straight-up CSS solution for this problem. The way to get style
lists cross-browser is to first create a class with the same characteristics as your li tag. Then
wrap the list text with a span tag and assign the list-emulating class to the span. Admittedly,
this is far more trouble than you ever bargained for, but it will solve the Netscape list problem.

Another list-related property to look out for with Netscape is list-style-position; it’s
unsupported in Netscape 4.x.

Netscape 4 on the Macintosh has an even weirder issue: bullets are replaced with question
marks if your list includes a list-style or list-style-type: none declaration, coupled
with margin or padding values. Although Netscape 4 Macintosh is fairly rare, if you have to
work around it, you’ll need to do without either the bullet-less, unordered list look, or the
margin/padding—one of them has to go to get rid of the mysterious question marks.

Handling Table Discrepancies
As noted earlier, Netscape 4 has a real problem with inheritance, especially when it comes to
the various table tags. Unfortunately, those aren’t the only problems with this aging browser in
these frequently used HTML elements. Neither the table nor tr tags handle CSS properties
appropriately; support is so spotty, it’s best to apply styles directly to td tags only.

Moreover, three key properties—margin, padding, and border—don’t work as expected in
Netscape 4. Unfortunately, the work-around is only partially CSS-based whereas with newer
browsers, your td cells can be styled directly or with classes:

<td class=”tableBody”>Southeast Regional Sales</td>

To achieve the same result in Netscape 4, you must insert a div tag within the td cell itself,
like this:

<td><div class=”tableBody”>Southeast Regional Sales</div></td>

05_579851 ch02.qxd 5/4/05 10:54 PM Page 26

TEAM LinG

27Chapter 2 — Filtering CSS for Older Browsers

Even with this technique, your table designs won’t be flawless in Netscape 4. As shown in
Figure 2-12, gaps like those in the upper-left cell are a fact of life.

FIGURE 2-12: Even the savviest of CSS hacks can’t fix rendering
issues like the misdrawn upper-left table cell border.

Fixing Internet Explorer 3 and 4
Designers recently entering the market may find it hard to believe, but in the early days of the
Web, Microsoft’s Internet Explorer was an also-ran. Yet, even though Netscape was king of the
browsers, it was Internet Explorer 3 that first included Cascading Style Sheets support when it
was released in August 1996. True, support was spotty at best, but it did start the CSS ball rolling.
By the time Internet Explorer 4 was introduced a little more than a year later, Microsoft held the
lead in CSS development—and was tipping the balance in the browser war.

In my experience, these older versions of Internet Explorer are far less prevelant than Netscape 4.
One of the main benefits that Microsoft enjoys as the manufacturer of the leading operating sys-
tems is that new computers come with the latest version of its browser. As Windows computers
were upgraded, so were the versions of Internet Explorer.

However, all the statistics in the world demonstrating that Internet Explorer 4 has a very small
marketshare globally are moot if your client’s CEO still uses it.

Hiding Style Sheets from Internet Explorer 3 and 4
As noted earlier in this chapter, some of the same techniques used to divert CSS for Netscape 4
also work for Internet Explorer 3 and 4. Again, you have an option to either use separate style
sheets—one for the older browsers and one or more for the modern browsers—or hide styles
individually.

Neither Netscape 4 nor Internet Explorer 3 recognize the @import method for attaching style
sheets. The easiest approach to designing for both, therefore, is to use the link tag to attach
the style sheet for the older browsers and @import for all the others, like this:

05_579851 ch02.qxd 5/4/05 10:54 PM Page 27

TEAM LinG

28 CSS Hacks and Filters: Making Cascading Style Sheets Work

<link href=”mainstyleNS4IE3.css” rel=”stylesheet” type=”text/css”>
<style type=”text/css”>
<!--
@import url(“mainstyle.css”);
-->
</style>

Internet Explorer 4 does, to some extent, recognize the @import construct. However, it only
acknowledges it under a specific syntax. The CSS2 specifications offer two ways to apply the
@import rule:

@import “mystyle.css”;
@import url(“mystyle.css”);

Although the latter approach is more prevantly used by designers, the initial version is primarily
interesting because it is not recognized by Internet Explorer 4. If you had one style sheet intended
for Internet Explorer 3 and 4 (and Netscape 4) and another for more standards-compliant
browsers, you could rely on this Internet Explorer 4 failing and use code like this:

<link href=”mainstyleIE3IE4NS4.css” rel=”stylesheet”
type=”text/css”>
<style type=”text/css”>
<!--
@import “mainstyle.css”;
-->
</style>

Concealing Individual Rules
As the earliest entry into the CSS realm, Internet Explorer 3 implements numerous key con-
cepts incorrectly. Chief among these problem areas is the cascade. Normally, in CSS, if you
declare the same element and property, the last occuring in the page determines the style. For
example, you could use these CSS rules:

p { color: red; }
p { color: blue; }

The more standards-compliant browsers would color the p tags blue. Internet Explorer 3,
however, only recognizes the first rule—all others are ignored. This behavior provides an easy
pathway to controlling what Internet Explorer 3 sees and what it doesn’t.

To hide a single rule from Internet Explorer 4, you can wrap the rule with another at-sign tag,
@media. The complete syntax is as follows:

@media all {
tr { margin: 3px; }

}

Internet Explorer 4 doesn’t recognize @media as a selector and so it ignores the definition of
the property.

05_579851 ch02.qxd 5/4/05 10:54 PM Page 28

TEAM LinG

29Chapter 2 — Filtering CSS for Older Browsers

Adjusting for Table Properties
While Internet Explorer 3 just flat out doesn’t support a lot of CSS, most of the problems with
Internet Explorer 4 are centered on badly implemented CSS properties rather than missing ones.
A primary area that suffers from this mistreatment concerns table tags.

Any style rules using the margin, padding, or border properties do not work on the range
of table tags: table, tr, td, and td. The work-around here, as it was with Netscape 4, is to
insert a div tag within a td (or around the table tag) and style the div:

<td><div class=”tableBody”>Southeast Sales Region</div></td>
<td><div class=”tableBody”>$23,000.00</div></td>

As you can see from Figure 2-13, Internet Explorer 4 handles this work-around far better.

FIGURE 2-13: Table cell borders in Internet Explorer 4 are
good to go, once a CSS work-around is put in place.

Inheritance is also a problem for Internet Explorer 4 with regard to tables. When working with
font properties, the only one that is inherited by the table or any table-related tag is font-
family; any other style must be applied directly to the td or tr tags.

Font Problems to Avoid
Both HTML and CSS allow for the declaring of font families: a comma-separated list of
fonts applied to a tag or selector. If the first font listed does not exist on the user’s machine, the
browser tries to render with the second one, and proceeds down the list. Internet Explorer 3
has a real problem with the font-family property in CSS: should the first listed font be
unavailable, the rest are ignored.

The work-around for this odd issue—font families are recognized perfectly when applied
through HTML—is equally odd. Your style rule may look like this:

p {
font-family: Verdana, Arial, Helvetica, sans-serif;

}

05_579851 ch02.qxd 5/4/05 10:54 PM Page 29

TEAM LinG

30 CSS Hacks and Filters: Making Cascading Style Sheets Work

To get it work properly in Internet Explorer 3, you’ll need to use this syntax:

p {
font-family: sans-serif;
font-family: Helvetica;
font-family: Arial;
font-family: Verdana;

}

Internet Explorer 3 ignores the multiple font options if presented in a string, so each option
must be presented separately. The order is reversed to make sure the best font possible is cho-
sen. With this CSS sequence, Internet Explorer 3 starts out with sans-serif and then changes
to Helvetica if it finds it. Next, it changes the style to Arial if available and, finally, to Verdana
if that font is present.

Another problem (common to both Internet Explorer 3 and 4) is related to the font-family
property. Both browsers stumble when trying to render style declarations within a selector that
come after font-family declarations. The simple cure is to move font-family declara-
tions so that they are the last in the style rule.

Another, somewhat more bizarre fix is to add a named color after the font-family declara-
tion, like this:

p {
font-family:sans-serif;
color: red;

}

Making Margins and Padding Useful
Here’s one that could keep you scratching your head for days. Say you’ve got two div tags,
one inside the other. For the inner div, you set the left and right padding to be a percentage,
like this:

#outer {
height: 200px;
width: 500px;
border: 1px solid #FF0000;

}
#inner {

border: 1px solid #0000FF;
padding-right: 5%;
padding-left: 5%;
text-align: justify;

}

The correct way for the browser to interpret this setting would be to calculate the percentage of
the width of the outer div and (assuming that the outer div was a set width) would always be
the same. In this example the padding on the left and right should equal 25 pixels (5 percent of
500 = 25). Yet, if you look at the page through Internet Explorer 4, you’ll find that the padding
expands or contracts—depending on the size of the browser window (see Figure 2-14).

05_579851 ch02.qxd 5/4/05 10:54 PM Page 30

TEAM LinG

31Chapter 2 — Filtering CSS for Older Browsers

Internet Explorer 4 is calculating the percentage according to the size of the viewport. To
adjust your CSS style sheet for this problem, you’ll need to substitute a style rule for your inner
div where the padding is set with a measurement unit other than percentage.

Another poser emerges if you apply CSS margin values to images that previously have used the
HTML attributes vspace or hspace. CSS-compliant browsers disregard the older HTML
attribute values and apply the CSS margins instead. Internet Explorer 4, on the other hand,
actually adds the CSS values on top of the HTML values. This is a very tricky scenario to
avoid because there is no way to adjust your CSS if the HTML attributes are present. A better
solution would be to use a good search-and-replace engine and strip the no-longer-needed
vspace and hspace attributes.

FIGURE 2-14: A margin issue in Internet Explorer 4 causes the padding to incorrectly
expand along with the browser window.

05_579851 ch02.qxd 5/4/05 10:54 PM Page 31

TEAM LinG

05_579851 ch02.qxd 5/4/05 10:54 PM Page 32

TEAM LinG

Hiding CSS from
Newer Browsers

With the release of Internet Explorer 5, Microsoft’s browser began
to establish dominance and appeared to be on the right track
to becoming the de facto standard. Although that version of

Internet Explorer still had a significant number of bugs and unsupported
features, subsequent releases have improved on its increasingly solid base of
CSS compliance. Unfortunately, browser development largely halted with
the release of Internet Explorer 6, Service Pack 1 in September 2002.
Microsoft has said that there will no further updates to the standalone
browser, and the next major revision will not be available until the latest
operating system (code-named Longhorn) is available. Even more unfortu-
nately, the cracks in Internet Explorer 6’s CSS support are becoming quite
apparent.

From the Netscape side of the browser war, a stunning defeat appears to
have been turned into a victory for designers. Mozilla 1 and the initial
release of Firefox boast a high degree of standards compliance for Gecko-
based browsers, especially where CSS is concerned. Apple’s Safari, based on
the Linux program Konqueror, definitely took advantage of previous advances
and released a highly reliable browser with excellent CSS capabilities. Opera
has been up and down in the CSS world, but has bounced back with a solid
implementation in its latest version; Opera 7 supports almost all of CSS 1 and
the majority of CSS 2.

No matter how close the latest round of browsers are to the CSS standard,
none is perfect—and a hack or filter may be the only way to achieve your
client-driven goals. In this chapter, you’ll find ways to correct problems
stemming from the majority of the browsers in use today, starting with
the somewhat special case of Internet Explorer 5 for Mac. The Internet
Explorer discussion continues with a focus on the recent versions of the
browser for Windows: Internet Explorer 5, 5.5, and 6.

In many ways, Internet Explorer was a great example of how not to make
a browser. Although these competitive browsers (including Gecko-based
browsers like Mozilla and Firefox, as well as Safari and Opera) learned from
observing Internet Explorer’s mistakes, they’re not perfect. The balance of
the chapter dives into some of their problems and possible hacks.

˛ Controlling Internet
Explorer 5 and
Above

˛ Taming Gecko-
Based Browsers

˛ Filtering Out Safari

˛ Handling Opera
Problems

chapter

in this chapter

06_579851 ch03.qxd 5/4/05 10:45 PM Page 33

TEAM LinG

34 CSS Hacks and Filters: Making Cascading Style Sheets Work

Controlling Internet Explorer 5 and Above
The pivotal moment in the browser wars came with the release of Internet Explorer 5 when
Microsoft’s new free browser was demonstrably more powerful (and more CSS-rich) than
Netscape’s current commercial offering. Internet Explorer cemented its position with the next
series of releases on various platforms, with widely different capabilities on the Macintosh and
Windows. The latest versions of Internet Explorer made CSS more available to Web visitors,
while simultaneously making it more complicated for Web developers to support.

To properly target the full range of modern Internet Explorer browsers, you’ll need a variety of
techniques under your belt. In addition to being able to handle problems in specific browser
versions, for the greatest degree of efficiency, you’ll also want to master CSS hacks that address
a range of versions. For example, there’s a bug that causes text within multiple div tags to
move increasingly to the left—but only in Internet Explorer 5.5 and Internet Explorer 6, and
not Internet Explorer 5. You must know which hack resolves the problem in both of the later
browser versions, while leaving the earlier browser release unaffected. (Massive hint: This par-
ticular issue is solved by the Holly Hack, covered later in this chapter.)

Managing CSS in Internet Explorer 5.x for Mac
Although the Windows version of Internet Explorer 5 was a serviceable improvement over the
previous release on that platform, Microsoft Internet Explorer 5 for Mac was a whole other
animal. Designed from the ground up to be more Mac-centric than any of Microsoft’s previous
browsers, Internet Explorer 5 for Mac implemented many new features including the best sup-
port for the DOM and CSS to date. Although Safari has made significant inroads as the dom-
inant browser in the market, Internet Explorer 5 definitely remains a player.

Unfortunately, as cool a browser as Internet Explorer 5 for Mac was when introduced, it also
included a fair number of CSS-related bugs. Following are some of the key issues:

� Content within absolutely positioned elements unnecessarily triggers scrollbars if placed
too close to a window’s edge.

� Images with align attributes pop in front of div tags with a higher z-index.

� Text does not wrap correctly around floated elements without a width defined.

� Checkbox boxes and radio buttons incorrectly inherit the background color of another
form element in the same container (only in Internet Explorer 5.1, the OS X version).

� Background images do not display when the defining rule uses single quotation marks
rather than double quotation marks.

� The browser crashes when the vertical–align (with any value) and background:
inherit properties are defined together in any selector.

It’s important to realize that Internet Explorer 5 for Mac and the one for Windows are com-
pletely different browsers, developed by independent teams. CSS hacks that work for one ver-
sion won’t necessarily work for the other.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 34

TEAM LinG

35Chapter 3 — Hiding CSS from Newer Browsers

A number of great online resources list CSS bugs you might encounter in Internet Explorer 5 for
Mac, including Peter-Paul Koch’s QuirksMode (www.quirksmode.org/index.html?/
browsers/explorer5mac.html); MacEdition’s CodeBitch (www.macedition.com/cb/
ie5macbugs/); and some from Philippe Wittenbergh (www.l-c-n.com/IE5tests/).

The next sections look at the top four hacks for Internet Explorer 5 for Mac: the @media, the
Mac Band Pass, the Commented Backslash, and the Mac-modified Tan Hacks.

@media Hack
The @media rule is useful for embedding CSS styles in a document, targeted to specific media
types (such as print, screen, or projection). For a more general approach, you can use this type
of selector: @media all. Any such @media selector-based rule is not recognized by Internet
Explorer 5 for Mac and can be effectively used to hide any style rules from it. For example, in
the following code, the p tag would be underlined in Internet Explorer 5 for Mac, but not else-
where, as shown in Figure 3-1.

FIGURE 3-1: The @media hack hides styles from Internet Explorer 5
for Mac, as well as most other fourth-generation browsers.

/* read by IE5 Mac and all browsers */
#mainHeading { text-decoration: underline; }

/* hide from Internet Explorer 5 for Mac */
@media all {
#mainHeading { text-decoration: none; }

}

06_579851 ch03.qxd 5/4/05 10:45 PM Page 35

TEAM LinG

36 CSS Hacks and Filters: Making Cascading Style Sheets Work

The @media hack also hides style rules from Netscape 4, and Internet Explorer 4 on both Mac
and Windows platforms.

Mac Band Pass Filter
While the @media all hack is good for filtering out rules for Internet Explorer 5 for Mac
and a number of other legacy browsers, if you’ve developed a separate style sheet just for
Internet Explorer 5 for Mac, there’s a better way. The Mac Band Pass filter, developed by
Tantek Çelik, is perfect for targeting a style sheet to this browser.

The Mac Band Pass filter relies on Internet Explorer 5 for Mac’s particular method of inter-
preting escaped characters within CSS comment tags. Let’s jump in and take a look at a com-
pleted example:

/**//*/
@import “../styles/default.css”;

/**/

If it looks complex, don’t worry—it is. But it’s also highly functional: only Internet Explorer 5
for Mac sees the @import declaration; all other browsers treat it as text within a comment.

All browsers, including Internet Explorer 5 for Mac, look at the example code and see two
comments. The difference is that Internet Explorer 5 for Mac sees a comment on the top line
and on the bottom line. I’ve bolded the start and end of each of the two comments, as seen by
the Mac browser:

/**//*/
@import “../styles/default.css”;

/**/

By contrast, for all other browsers, the first comment starts and ends in the opening line and
the second comment wraps around the declaration. To make this clear, I’ve added a little white
space between the two comments, as well as bolding them:

/**/ /*/
@import “../styles/default.css”;

/**/

All browsers except Internet Explorer 5 for Mac will, therefore, ignore external style sheets
linked in this way—which makes this filter perfect for Internet Explorer 5 for Mac–only use.

Commented Backslash Hack
If you find the Mac Band Pass filter a bit too difficult to remember, there’s a simpler variation
called the Commented Backslash Hack. I first saw this hack on Sam Foster’s Sam-I-Am.com
site (http://www.sam-i-am.com/work/css/).

There are two ways to apply the Commented Backslash Hack—one is good for hiding single
rules and the other is useful for concealing multiple style rules from Internet Explorer 5 for
Mac. Both are based on this browser’s particular problem with parsing backslashes within a
comment. If you place a backslash anywhere within a CSS comment except before the closing
asterisk-forward slash), Internet Explorer 5 for Mac skips over the rule defined next. For exam-
ple, in this code, Internet Explorer 5 for Mac would apply the –15 pixel margin-bottom and
ignore the 0 value for the pullQuote ID selector:

06_579851 ch03.qxd 5/4/05 10:45 PM Page 36

TEAM LinG

37Chapter 3 — Hiding CSS from Newer Browsers

#pullQuote { margin-bottom: -15px; }
/* Use backslash within comment \ to ignore next rule in IE5 Mac
*/
#pullQuote { margin-bottom: 0px; }

Any subsequent rules defined will be interpreted by Internet Explorer 5 for Mac.

Simply moving the backslash to just before the closing delimiters allows the Commented
Backslash Hack to hide multiple style declarations from Internet Explorer 5 for Mac. When
you want to reveal styles to the browser again, simply add another complete comment. Here’s
an example:

#pullQuote { margin-bottom: -15px; }
.raiseUp {vertical-align: 50%; background: transparent;}

/* commented backslash hack – multiple styles */
#pullQuote { margin-bottom: 0px; }
.raiseUp {vertical-align: 50%; background: inherit;}
/* end commented backslash hack */

For the multiple-rule variation of the Commented Backslash Hack to work, it’s important that
there are no characters or white space between the backslash and the closing delimiters.

Mac-Modified Tan Hack
Here’s another method to pass a declaration just to Internet Explorer 5 for Mac. The Mac-
modified Tan Hack excludes all other browsers through a combination of methods. Most
browsers ignore the following style rule:

*>html .endSection {height: auto;}

The particular opening syntax, *>html, is seen only by Internet Explorer 5 on both Macintosh
and Windows systems. To further limit the declaration to just the Macintosh platform, you’ll
need to exclude Internet Explorer 5 for Windows by including an escape character in the prop-
erty, like this:

*>html .endSection {he\ight: auto;}

You’ll want to make sure that the backslash character is placed within the property correctly.
CSS interprets the characters \a through \f as hexadecimal values; inserting the backslash
before any letter following “f ” in the alphabet does the trick and completes the Internet
Explorer 5 for Mac hack.

Balancing Internet Explorer 5, 5.5, and 6
Check any global stats on browser usage and there’s no doubt: Internet Explorer is king. While
the latest version (Internet Explorer 6) definitely has the lion’s share of the market, Internet
Explorer 5 and 5.5 still are used by a significant number of users. Although this widespread use
of a limited number of browsers does bring a degree of stability to the Web, numerous serious
CSS issues in these browsers directly affect virtually every design.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 37

TEAM LinG

38 CSS Hacks and Filters: Making Cascading Style Sheets Work

Understanding Internet Explorer’s Box Model Problem
Perhaps the most notorious (and most significant) Internet Explorer bug centers on the CSS Box
Model. The Box Model is a true cornerstone of the Cascading Style Sheets specifications and
affects every single block element: div, p, h1-h6, table, blockquote, ul, ol, and form
tags, among others. Before you can grasp how Internet Explorer gets the Box Model wrong, you
must understand how it is intended to work—and does in all other modern browsers.

In the CSS specifications, any block element consists of four primary elements, nested inside of
each other: content, padding, border, and margins. The content is surrounded by the padding,
which, in turn, is enclosed by the border—all of which is within the margins. Figure 3-2 shows
a representation of a Box Model where the content area is 200 pixels wide by 100 pixels high,
and there is a 10-pixel padding, 5-pixel border, and 10-pixel margin.

FIGURE 3-2: Under CSS specifications,
an applied style rule with a 200-pixel
width actually takes up 250 pixels of
space on the page.

When you set a width in CSS for a style rule intended for a block element, the specification
intends for that width to apply only to the content area. The rendering of all other portions of
the Box Model are based on that assumption. In this example, the entire Box Model is 250 pix-
els wide by 150 pixels high. Here’s how the width is figured:

200 pixel content area width
10 pixel padding-left
10 pixel padding-right
5 pixel border-left
5 pixel border-right
10 pixel margin-left

 10 pixel margin-right
250 pixel width total

Margin

Padding

Content Area

Border

06_579851 ch03.qxd 5/4/05 10:45 PM Page 38

TEAM LinG

39Chapter 3 — Hiding CSS from Newer Browsers

A similar process is used to calculate the height:

100 pixel content area height
10 pixel padding-top
10 pixel padding-bottom
5 pixel border-top
5 pixel border-bottom
10 pixel margin-top

 10 pixel margin-bottom
250 pixel height total

This seems pretty straightforward, right? The width specified in any CSS rule refers to the
content area of a block element—or at least it does for Mozilla, Firefox, Safari, and other CSS-
compliant browsers.

Internet Explorer 5, 5.5, and 6 (under certain circumstances explained a bit later), however, see
it differently. For these browsers, the width defined in a CSS rule encompasses the content area
as well as the padding and borders; only the margins are outside of the width (see Figure 3-3).

FIGURE 3-3: When calculating how
to render a block element’s width
and height, Internet Explorer uses
a different baseline than CSS
specifications.

This means that, in Internet Explorer 5 and above, the CSS rule previously described with a
width of 200 pixels and a height of 100 pixels would be rendered in an area significantly smaller
than in other browsers, as shown in Figure 3-4. Instead of taking up 250 pixels by 150 pixels, the
Internet Explorer Box Model would be shown at 220 pixels by 120 pixels.

CSS Width

IE5/6 Width

06_579851 ch03.qxd 5/4/05 10:45 PM Page 39

TEAM LinG

40 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 3-4: The same file is shown in a browser that gets the CSS
Box Model right, Firefox on the left, and one that gets it wrong,
Internet Explorer 5.5 on the right.

As if this were not bad enough, there are additional complications that vary according to the
design. Not all CSS rules involving the Box Model include padding, border, or margin values
and, therefore, depending on the design, the Box Models could be the same. For example, say
you have a div tag with a width of 400 and a height of 200, but no padding or border is speci-
fied. In this situation the div tag would render the same in both Internet Explorer and standards-
compliant browsers (see Figure 3-5). What this means is that there is no global solution and
that each block element must be addressed separately.

FIGURE 3-5: When padding and borders properties are both set to 0, the Box Model
appears uniform across modern browsers.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 40

TEAM LinG

41Chapter 3 — Hiding CSS from Newer Browsers

You’ll also have to keep straight which browsers represent the Box Model wrong and which
ones get it right. All versions of Internet Explorer 5 on Windows (including 5.5) interpret the
Box Model incorrectly. The Macintosh version of Internet Explorer 5, on the other hand, pre-
sents the Box Model properly. Internet Explorer 6, however, gets it right—but only when in
the so-called standards mode. As you may or may not be aware, to handle backward-compati-
bility issues, Internet Explorer 5 for the Mac introduced the concept of DOCTYPE switching.
When a proper DOCTYPE is included on the page before the opening html tag, Internet
Explorer 6 renders the page according to the latest standards. When no DOCTYPE or an
improperly formed DOCTYPE is employed (typically caused by omitting the URL reference),
the browser enters what is known as quirks mode. Quirks mode uses the incorrect Box Model
calculations, emulating Internet Explorer 5 browsers, while standards mode uses the correct
Box Model according to CSS specifications.

Fixing the Box Model with the Tan Hack
For numerous designers, the need to fix a Box Model–related issue brings their first exposure to
a CSS hack. Because this problem is so significant and the solution requirements so precise, a
number of steps must be followed to achieve a complete resolution.

Perhaps the most famous hack, developed by Tantek Çelik, was created to solve the problem.
Although still workable, his original technique is moderately difficult to apply and causes some
unwanted effects with other browsers. A more appropriate solution was created by Edwardson
Tan and is known as the Tan Hack. To understand how the Tan Hack is used, here’s a look at a
problematic style rule:

.boxModel {
width: 200px;
height: 100px;
padding: 10px;
border: 5px solid #000000;
margin: 10px;
background-color: #FFFF00;

}

To adjust this class so that Internet Explorer 5.x on Windows displays it properly, you’ll need
to add this rule:

* html .boxModel {
width: 230px;
height: 230px;

}

The results of including the Tan Hack are shown in Figure 3-6.

It’s important to realize that the height property is used here purely to demonstrate Box Model
issues. Most designers only apply height properties in the rarest of circumstances, preferring to
let the content determine the tallness of the box.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 41

TEAM LinG

42 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 3-6: With the Tan Hack in place, both Firefox (the standards-
compliant browser on the left) and Internet Explorer 5.5 (on the right)
display the div element at the same width and height.

The selector used is applied to any element with a class attribute of boxModel, which is a
descendant of the html element that, in turn, is the descendant of any other element. The key
here, of course, is the universal selector, the asterisk, used in combination with the html tag.
Only Internet Explorer browsers accept the * html selector as a viable condition; for some rea-
son, the Microsoft engineers have structured their browsers to regard the html tag as within
some other element that wraps around it. All other browsers see html as the outermost ele-
ment on the page, and see no opportunity to apply this rule.

The new values within the Tan Hack are calculated using this formula:

Hack Width = originalWidth + originalPadding-Left + originalPadding-Right +
originalBorder-Left + originalBorder-Right

Hack Height = originalWidth + originalPadding-Top + originalPadding-Bottom +
originalBorder-Top + originalBorder-Bottom

The Tan Hack can be applied to a block element, ID, or class selector. In this example, the class
.boxModel would be substituted for another selector.

You may have noticed the sentence, “Only Internet Explorer browsers accept the * html selec-
tor as a viable condition.” Unfortunately, this condition applies to all Internet Explorer browsers
version 5 and higher—even browsers such as Internet Explorer 5 for Mac and Internet Explorer
6 in standards mode that get the Box Model right. The implications of this are that another
hack must be employed to ensure that all browsers are handled correctly. Which hack you use
depends on the mode with which Internet Explorer renders the page. For standards mode, you’ll
need to adapt the Tan Hack like this:

06_579851 ch03.qxd 5/4/05 10:45 PM Page 42

TEAM LinG

43Chapter 3 — Hiding CSS from Newer Browsers

* html .boxModel {
width: 230px;
height: 130px;
w\idth: 200px;
he\ight: 100px;

}

The backslash within the property names width and height is not readable by Internet
Explorer 5.x on Windows, but does come through for Internet Explorer 5 for Mac and
Internet Explorer 6. The values used here correspond to the original width and height.
This combination of the Tan Hack and backslash is also known as the Modified Simple Box
Model Hack.

As noted previously, the placement of the backslash within the property name is important to get
right. Don’t place the backslash in front of any character in the a–f range. If you do, the combi-
nation (that is, \d) is seen as representing a hexadecimal value. It is safest to always place the
backslash before the “i” character.

For pages viewed in quirks mode, a different hack is required to ensure that the style renders
properly cross-browser. You’ll remember that when Internet Explorer 6 is in quirks mode, it
behaves like Internet Explorer 5.x. Therefore, no readjustment is needed for that browser.
Internet Explorer 5 for Mac, however, still needs to include the resetting rule. Luckily, the
Commented Backslash Hack, covered earlier in this chapter, provides the perfect solution:

/* Start Commented Backslash Hack */
* html .boxModel {
width: 230px;
height: 230px;

}
/* Close Commented Backslash Hack */

Given the market prominence that Internet Explorer 5 and especially 6 have for the foreseeable
future, you’ll be well served by learning how to apply the various hacks needed to solve the Box
Model problem.

If you need to solve Internet Explorer–related problems, but are skittish about employing tradi-
tional CSS hacks, take a look at Chapter 4, “Applying Conditional Comments,” for a valid, man-
ufacturer-sanctioned method of hiding code from and revealing code to Internet Explorer
browsers.

Owen Hack
If you’re looking for a way to hide CSS styles from all Internet Explorer browsers on Windows,
but not Gecko-based browsers, Safari, or the Internet Explorer 5 for Mac, consider the Owen
Hack. The Owen Hack was created by John Albin Wilkins and centers on a CSS construct
called a pseudo-element. A pseudo-element is a selector that is dynamically created. Two prime
examples are :first-letter and :first-line—both are CSS selectors that are applied
to text in a particular position (that is, either the first letter of a sentence or the first line in a
paragraph, respectively).

06_579851 ch03.qxd 5/4/05 10:45 PM Page 43

TEAM LinG

44 CSS Hacks and Filters: Making Cascading Style Sheets Work

Although most modern browsers recognize :first-letter and :first-line, no version
of Internet Explorer recognizes another pseudo-element, :first-child—and the rules of
CSS insist that any unrecognized selector be ignored. To ensure that other browsers do apply
the rule, however, you must establish the rule so that the :first-child pseudo-element is
always present. The following code does the trick:

head:first-child+body #navSection {
background-image: url(“navbar.gif”);

}

Translated into English, this selector addresses the ID named navSection (for which you
can substitute any other selector) within the body tag as long as the body tag is the tag adja-
cent to a head tag, which, in turn, is the first child of its parent. The initial section of the
selector—head:first-child+body—is always true; the head tag is always the first child
of its parent, html, and the body tag is always adjacent to the head tag.

You may be curious about the decidedly non-technical name of the Owen Hack. Creator John
Albin Williams named this hack after his own first child, Owen.

Aside from styles defined in this way being ignored by Internet Explorer browsers on
Windows, they are also not recognized by Opera, version 6 and earlier.

Comment After Selector Hack
When you must define rules hidden from Internet Explorer 5 (on either Windows or Macintosh,
but not version 5.5 or higher), the Comment After Selector Hack is good to know about. The
hack, which passes as valid CSS, is very straightforward to implement. All that’s necessary is a
CSS comment placed between the selector and the opening curly brace that starts the declaration
block, like this:

#header/* */ { text-align: left; }

Any property/value pairs set within these curly braces are ignored by Internet Explorer 5, but
available to Internet Explorer 6, as well as other modern browsers.

Resolving Internet Explorer Issues
Now that you have a few strategies for working with CSS hacks and Internet Explorer in hand,
you can put them to work. In this section, you’ll encounter several of the most vexing CSS bugs
in Internet Explorer—and their solutions.

The problems covered in this section are just the tip of a very large iceberg. You’ll find a number
of great online resources listed in Appendix A, “Resources.”

Revealing the Peekaboo Bug
Here’s a completely startling bug. Imagine you’ve created a div tag that includes a floating ele-
ment along with some text, links, or other content. Below the floated div is another div that
is used to clear the float—a common CSS layout. If you preview your page in Firefox, Safari, or
any other modern browser, everything looks as expected. However, when you test the page in
Internet Explorer 6, none of the content next to the floated element is visible (see Figure 3-7).
Even weirder, if you switch to another program or minimize and then restore the browser, the
content suddenly appears. Is there any wonder why this is known as the Peekaboo bug?

06_579851 ch03.qxd 5/4/05 10:45 PM Page 44

TEAM LinG

45Chapter 3 — Hiding CSS from Newer Browsers

FIGURE 3-7: It’s what you don’t see here that’s important. The Internet Explorer 6
Peekaboo bug is keeping content to the right of the floated div from appearing.

If you look closely at the layout in the Internet Explorer 6 browser in Figure 3-7, you’ll notice a
slight gap between the left side of the container div and the floated div. This gap is the result
of another Internet Explorer 6 bug, appropriately called the Three Pixel Gap; this bug, and its
solution, is discussed in Chapter 4.

The bug appears to be caused when the floated div is physically touching the clearer div. If
the content within the container div is substantial enough to push the clearer div away from

Enabling Internet Explorer 7 Functionality

One of the more interesting approaches to solving the myriad problems with Internet Explorer
has been undertaken by Dean Edwards: IE7. Through a JavaScript library, Dean manages to get
Internet Explorer to behave in the CSS standards-compliant manner everyone wishes it would.
Once the IE7 JavaScript library is included in a page, CSS designers can take advantage of
numerous key CSS2 and CSS3 implementations, including a great number of additional selec-
tors such as multiple classes, adjacent sibling, attributes, and pseudo-elements like :first-
child and :last-child.

The IE7 project also addresses major Internet Explorer problems like the Box Model bug (in both
standard and quirks mode) and the double-margin float issue. It also corrects significant omis-
sions in Internet Explorer, like the ability to handle min-width and background-position
properties.

You can find out more about Dean’s IE7 project—and download the current version—at
http://dean.edwards.name/IE7/.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 45

TEAM LinG

46 CSS Hacks and Filters: Making Cascading Style Sheets Work

the floated div, the bug will not be triggered. This, however, is not a guaranteed universal
solution and not a viable approach for the designer. A better method is to selectively apply a
small height to the containing element. This forces Internet Explorer 6 to correctly render the
content within it. A minimal height declaration does the trick:

#container {height: 1%;}

This fix is known as the Holly Hack and was discovered and documented at the Position
Is Everything (PIE) site (http://www.positioniseverything.net/articles/
hollyhack.html).

In many situations, designers would rather not specify a height for a containing div, but prefer
to allow the container to expand automatically. Standards-compliant browsers restrict a div
to a specified height, whereas Windows versions of Internet Explorer improperly expand it to
hold the excess content. For this reason, you only want to apply the fix for the Peekaboo bug
to Internet Explorer on Windows, and specifically avoid affecting Internet Explorer on the
Mac and other standards-compliant browsers. The combination Tan Hack and Commented
Backslash Hack discussed earlier is just the ticket:

/* Start Commented Backslash Hack */
* html #container {height: 1%;}
/* Close Commented Backslash Hack */

Once applied, all the content is visible all the time—regardless of the browser used (see
Figure 3-8).

Why does the Holly Hack work? Evidently, when the Internet Explorer engine evaluates a float
for rendering, it looks to see if the property hasLayout is true. If so, the float is displayed
according to standards. If not, you’ll get the Peekaboo bug, as well as a host of others. According
to Microsoft’s only documentation on this mysterious function (http://msdn.microsoft
.com/workshop/browser/mshtml/reference/ifaces/currentstyle2/
haslayout.asp), hasLayout is set to true if any of the following conditions are met:

� display is set to inline-block

� height is set to any value

� float is set to either left or right

� position is set to absolute

� width is set to any value

� writing-mode is set to tb-rl

� zoom is set to any value

The Holly Hack uses height set to 1%, which makes hasLayout true, which, in turn, causes
Internet Explorer to render the float correctly.

Although most of the other properties are easily recognized, you probably are not as familiar
with either writing-mode or zoom. The writing-mode property is a proposed addition to

06_579851 ch03.qxd 5/4/05 10:45 PM Page 46

TEAM LinG

47Chapter 3 — Hiding CSS from Newer Browsers

CSS that determines how the text should be written; the tb-rl value stands for “top to bot-
tom, right to left,” a typography style used in East Asia. By contrast, Western typography is
depicted left to right, top to bottom or, as a value for writing-mode, lr-tb.

The zoom property sets the magnification or scaling of an element. For example, if you set the
zoom for an image to 200%, it would appear to be magnified to twice its normal size, but keep
the same dimensions. When used to trigger the hasLayout function, the property is typically
set to its 100% state, like this:

#container { zoom: 1; }

Both the writing-mode and zoom properties are proprietary to Internet Explorer 5.5 and
up, and neither will validate. To use these and maintain validation, you’d need to wrap them
with Internet Explorer conditional comments, as discussed in Chapter 4, “Applying
Conditional Comments.”

FIGURE 3-8: With the Holly Hack in place, your content’s peek-a-boo
playing days are over.

Solving the Doubled Float-Margin Problem
The float property is fast becoming a designer’s favorite. Not only does it allow content out-
side of the float to flow around it on either the left or right side of a containing element, but it
also provides methods for more precise placement. If the design calls for an image floated to
the left, but not touching the outer edge, setting a margin-left property to the appropriate
value does the trick. Unfortunately, Internet Explorer on Windows doubles the specified mar-
gin, thus obliterating the designer’s fine-tuning. You can clearly see the effect in Figure 3-9.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 47

TEAM LinG

48 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 3-9: Firefox and other standards-compliant browsers render the margin on a floated
div as expected, whereas Internet Explorer doubles the specified amount.

To resolve this problem (and get your floats back to where they should be in Internet Explorer),
you simply add a single declaration to your style that controls the float: display: inline.
Here’s one fix that, at least for the time being, doesn’t need to be hidden from other browsers.
All other standards-compliant browsers correctly ignore the display: inline declaration
when applied to a floating element. However, if you are concerned about future compatibility,
you can always use the Tan Hack or a conditional comment (discussed in Chapter 4) to limit the
modification to Internet Explorer browsers. Here’s an example of how it would look with the
Tan Hack:

* html #mainFloat {display: inline;}

There’s no need to hide it from Internet Explorer 5 for Mac because that browser properly
ignores the display property when set to inline within a floating element—and there’s very
little chance that Microsoft will be developing a new version of that browser anytime soon.

Taming Gecko-Based Browsers
If you ever need to make an argument for the Open Source method of software development,
just tell folks to compare the bug lists for Internet Explorer and Mozilla. The number of CSS
problems with Gecko-based browsers (including Mozilla, Firefox, and Camino) is tiny—and,
best of all, shrinking. A large number of volunteers have made it their collective life-mission to
stamp out bugs in Mozilla as quickly as they can be identified.

Does this mean that there are no issues facing CSS-oriented designers when working with
Mozilla? No, there probably always will be some imperfections—but the problems currently
plaguing designers are few and far between. Nonetheless, it’s important to understand what
your options are when it comes to providing CSS hacks for Gecko-based browsers. Although
you may not need the support right now, you may need it in the future.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 48

TEAM LinG

49Chapter 3 — Hiding CSS from Newer Browsers

CSS Hack Strategies
Many CSS hacks rely on browsers not properly recognizing and processing legitimate CSS
rules. Here’s a bit of good news and bad news all rolled into one: Gecko-based browsers adhere
to CSS standards so closely that there are very few possibilities for CSS hacks to be developed.
In fact, most of the CSS hack possibilities stem from aspects that Gecko-based browsers got
right that every other browser got wrong.

One such application has been previously discussed in this chapter: the Tan Hack. CSS rules
wrapped within the Tan Hack are only applied by Internet Explorer browsers, leaving Mozilla
and Firefox untouched. The Tan Hack, therefore, is an effective tool for hiding CSS rules from
Gecko-based browsers. For example, many float bugs in Internet Explorer are solved by adding
a minor height to the containing div tags, which causes Internet Explorer to render the area
properly. Often, such containing div tags are styled to expand as needed and declaring any
height is counterproductive. In these cases, you would use the Tan Hack to hide the fix, known
as the Holly Hack, from Gecko-based browsers:

* html #container {height: 1%;}

Another way to distinguish rules for Mozilla-related browsers is to apply the !important
property. Under CSS guidelines, the use of !important within any declaration increases the
specificity of a particular property/value pair, overriding any value assigned to the same prop-
erty not designated as !important. For example, in the following style rule, the resulting
color would be blue in Mozilla and Firefox, but red in Internet Explorer, which incorrectly
ignores the !important designation:

#footer {
color: blue !important;
color: red;

}

All bets with !important are off the table if the visitor has opted to override the designer.
Browsers typically provide a method for the user’s styles to be rendered, if so chosen. You can
find the option for doing this in the browser Preferences.

Other browsers that apply this rule correctly (and, thus, will behave like Gecko-based browsers)
are Internet Explorer 5 for Mac, Opera, and Safari.

Float Clearing with the :after Pseudo-Element
It seems only fitting that the problem caused by a farsighted CSS specification should be fixed by
another advanced CSS feature. Take a look at Figure 3-10. The content within the floated ele-
ment has caused the float to extend beyond the boundaries of the containing div. Although this,
in most cases, is not desirable behavior (typically, the expectation would be that the container
expand to include the larger float), it is, according to CSS specifications, rendered correctly.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 49

TEAM LinG

50 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 3-10: It may look funky, but the expanded float dropping outside
of the container is actually the way CSS specifications intended it.

Oddly enough, Internet Explorer errs on the side of the designer on this issue. If you preview
the same page in a recent version of Internet Explorer, you’ll see the container automatically
expand to contain the float. To achieve the same effect in Gecko-based browsers, the standard
approach is to add an element below the float where the clear:both style rule has been
applied, like this:

div.clearer { clear: both; }

While this is effective in Mozilla, Firefox, and other similarly CSS-compliant browsers, it also
adds additional markup to a page that is not strictly necessary for the page’s structure. Luckily,
these browsers also support an advanced CSS2 feature that can be used to solve the expanded
float issue through styles alone: the :after pseudo-element. The :after pseudo-element is
intended to be used to insert content after a specified selector. For example, say you wanted to
make sure that after every instance of a copyrighted name, the proper symbol (©) appeared.
Rather than insert each of these symbols by hand, you could create this style:

.regTrademark:after { content: “\A9”; vertical-align: super; font-
size: smaller; }

This style inserts the letters “TM” after every element marked with a .regTrademark class
and then styles them to be smaller and raised up.

Although it would be ideal to use a character entity like © as the content value in the
:after pseudo-element, CSS does not recognize character entities.

Tony Aslett from csscreator.com suggested another use for the :after pseudo-element. What
if, rather than adding visible content, hidden content was inserted—which included the
clear: both style declaration? Such a style rule might look like this:

06_579851 ch03.qxd 5/4/05 10:45 PM Page 50

TEAM LinG

51Chapter 3 — Hiding CSS from Newer Browsers

.addClear:after {
content: “.”;
display: block;
height: 0;
clear: both;
visibility: hidden;

}

The display: block declaration is included so that clear: both might be used; to
achieve minimum layout intrusion, both the height: 0 and visibility: hidden declara-
tions are inserted. Now, your Gecko-based browsers will represent the expanded float within
the container (see Figure 3-11) when the container is set to the .addClear class.

FIGURE 3-11: Without actually adding another element to the page,
the :after pseudo-element adds an invisible space with a clear:
both declaration.

Internet Explorer (which doesn’t need this correction) ignores the :after pseudo-element
completely. However, to make sure Internet Explorer doesn’t trip you up with its own particular
way of handling floats, you’ll need to include the Holly Hack to your page as well:

* html .addClear {height: 1%;}

Filtering Out Safari
When Safari was previewed in January 2003, midway between Macintosh’s OS X Jaguar and
Panther releases, it was an instant hit. Based on the Unix-developed Konqueror libraries, Safari
was a stylish, nimble browser with a small footprint. Much to the developer’s relief, the CSS
support in Safari was quite robust and a welcome antidote to the then-standard browser on the
Macintosh, Internet Explorer 5 for Mac. Most major CSS bugs or omissions were corrected by
the 1.2 update of Safari.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 51

TEAM LinG

52 CSS Hacks and Filters: Making Cascading Style Sheets Work

You can find a good resource for Safari issues at http://www.macedition.com/cb/
resources/safari/safari_surprises.html.

As of this writing, the major omission in Safari is the minimal amount of support for styling form
elements; only font-size and font-family are supported—and then, only when applied to
a text field. Other styling such as background-color on form fields is also missing.
Unfortunately, there is no current work-around for this discrepancy.

The Lang Pseudo-Class Hack
As with Gecko-based browsers, Safari’s substantial CSS support limits the number of hacks
needed or available. One property supported by current versions of Gecko-based browsers that
is not available to Safari 1.0 or 1.1 (used on Mac OS systems earlier than 10.3, Panther) is the
:lang pseudo-class selector. Should a style incorporate the :lang selector, the rule is applied
only when the specified element is targeted to a specific language. For example, suppose you
have a p tag with a lang attribute set to fr (French), like this:

<p lang=”fr”>Regardez, s’il vous plait!</>

To make this paragraph red, you would create a style like this:

p:lang(fr) { color: red; }

This type of selector is ignored in Safari, and so it could potentially be used to pass style rules
to other browsers. Admittedly, when this construct is used as a hack, it requires additional steps
including setting the html tag to use a lang attribute.

The Lang Pseudo-Class Hack also hides styles from Internet Explorer on Windows and
Netscape 4.

Safari 1.2 now supports the :lang pseudo-class selector and so this hack can only be used to cor-
rect problems in Safari 1.0 – 1.1.x.

The Exclamation Mark Hack
Another technique for hiding CSS from Safari—both versions 1.0 and 1.2—has emerged.
Placing an exclamation mark after the property/value pair of one declaration prevents any rules
that follow from being recognized by Safari. For example, in the following code, the h2 decla-
ration will not be viewed by Safari:

h2 { color: red; }
.nothingBelowForSafari {color: red; ! }
h2 { color: blue; }

Any h2 headings on associated pages would appear blue in every browser but Safari 1.0–1.2.
Keep in mind that no style declaration appearing after the Exclamation Mark Hack will be
processed by Safari, so place the hack with care.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 52

TEAM LinG

53Chapter 3 — Hiding CSS from Newer Browsers

Handling Opera Problems
As you might suspect for a browser company that includes the acknowledged father of
Cascading Style Sheets, Håkon Wium Lie, as their Chief Technology Officer, Opera has far-
reaching CSS support. However, a variety of issues have emerged in various releases—typically
fixed in the next version. The current version (7.54 as of this writing) is quite robust, with most
major bugs squashed.

Several Opera-related hacks, however, are still useful. The following section covers the three
main ones: the Be Nice to Opera, Media Query, and Owen Hacks.

Be Nice to Opera Hack
The primary challenge when building pages to be viewed in Opera is targeting the various ver-
sions. One of the most famous examples of this is a part of the Tantek Hack, the Be Nice to
Opera 5 rule. The opening section of the Tantek Hack—used to correct the Internet Explorer
Box Model—looks like this:

.boxModel {
width:230px;
voice-family: “\”}\””;
voice-family:inherit;
width:200px;

}

The primary target for this hack, Internet Explorer 5, cannot properly handle escaped quotes,
so it only sees the initial declaration, throwing away the voice-family property because it
has no declared value:

.boxModel {
width:230px;

}

Browsers that do render the Box Model according to specification are also capable of getting
past the escaped quotes and, thus, the quoted curly brace. These browsers (including all
Mozilla, Firefox, and Safari) all see the second width rule, width: 200px. When developing
this hack, it was thought that the current version of Opera at the time (5) was also unable to
parse the escaped quotes correctly, and so the Be Nice to Opera 5 rule was developed to restate
the width in a manner that would be readable by Opera, but not by Internet Explorer 5:

html>body .boxModel { width:200px }

Altogether, the code looks like this:

.boxModel {
width:230px;
voice-family: “\”}\””;
voice-family:inherit;
width:200px;

}
html>body .boxModel { width:200px }

06_579851 ch03.qxd 5/4/05 10:45 PM Page 53

TEAM LinG

54 CSS Hacks and Filters: Making Cascading Style Sheets Work

It now appears that most versions of Opera (from version 3.5 and up) can handle the escaped
quotes correctly, and so there is no real need for the Be Nice to Opera 5 rule in this case.
However, that doesn’t mean it cannot be used as its own hack to pass a rule to Opera (as well
as Mozilla, Firefox, and Safari) while hiding it from Internet Explorer on Windows.

Media Queries Hack
With each new version, Opera often paves new ground in implementing a cutting-edge CSS
specification well before any other browser. Currently, Opera 7.x is the only browser that com-
prehends a fascinating proposed CSS3 feature called Media Queries. A Media Query allows
the designer to specify a style rule for one or more particular media types (such as screen, hand-
held, and so on) exhibiting a particular characteristic. With Media Queries, you could, for
example, craft a style that would only be visible on a screen if the screen were in color. Such a
selector would look like this:

@media screen and (color) { ... }

Arve Bersvendsen (http://www.virtuelvis.com/archives/145.html) realized that
since Opera 7 was the only browser currently supporting Media Queries, they could be used to
pass styles exclusively to that browser. Media Queries are, at their heart, a logical statement.
Only if the statement evaluates to true are the declared styles rendered. To ensure that all
Opera 7 browsers can see a style, use a Media Query that always is true:

@media all and (min-width: 0px){ ... }

This selector is valid for all media in which a minimum width of 0 pixels is available—a univer-
sally true statement for all visual-based browsers.

To see the Media Queries Hack in action, here’s a look at an Opera 7–only bug. If you have
a fixed position div that contains an absolutely positioned child div, the child improperly
inherits the parent’s left and top positioning. In the example displayed in Figure 3-12, you can
see the parent div peeking out from behind the child div in Opera 7, even though the child
div should completely cover the parent.

By applying the Media Queries Hack and adjusting the position of the parent div, you can
ensure that you’ll get the desired effect cross-browser (see Figure 3-13). The code for the hack
adjusting the parent div values looks like this:

@media all and (min-width: 0px){
div {
left: 0px;
top: 0px;

}
}

Hacks that depend on cutting-edge features should be regarded as having a built-in (albeit
unknown) expiration date. Although Opera 7 is the only browser now supporting Media
Queries, you can be sure others are not far behind.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 54

TEAM LinG

55Chapter 3 — Hiding CSS from Newer Browsers

FIGURE 3-12: In all modern browsers except Opera 7,
you only see the child div.

FIGURE 3-13: The Media Queries Hack ensures that
only Opera 7 is affected.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 55

TEAM LinG

56 CSS Hacks and Filters: Making Cascading Style Sheets Work

Applying the Owen Hack
As seen earlier, the Owen Hack is effective for hiding styles from Internet Explorer browsers
on Windows, but it’s better known for performing the same chore for Opera, version 6 and
earlier. You’ll remember that the Owen Hack, created by John Albin Wilkins, is based on the
:first-child pseudo-element. Like Internet Explorer, these earlier versions of Opera don’t
recognize the :first-child pseudo-element when used as part of a selector and, therefore,
ignore the rule following. In the following example code, the style assigned to #navSection
is hidden in Opera, version 6 and earlier, and Internet Explorer on Windows:

head:first-child+body #navSection {
background-image: url(“navbar.gif”);

}

If you must limit the style rule masking to just Opera 6, a combination of the Be Nice to
Opera Hack and Simplifield Box Model Hack (referred to by John Albin Wilkins, creator of
the Owen Hack, as the Be Mean to Opera Hack) is required:

html>body #navSection {
bac\kground-image: url(“navbar.gif”);

}

This concept of nesting hacks is an important one and can help you hone in on specific
browser versions you need to address.

06_579851 ch03.qxd 5/4/05 10:45 PM Page 56

TEAM LinG

˛ About Conditional
Comments

˛ Showing/Hiding
Styles from
Individual Versions

˛ Showing or Hiding
a Range of Versions

˛ Working with
Non–Internet
Explorer Browsers

˛ Practical
Applications of
Conditional
Comments

chapter

in this chapter

Applying
Conditional
Comments

In the eyes of many designers, a CSS hack is thought to be outlaw code.
This feeling persists even if the modification validates, maybe because
the hack is not officially sanctioned. With conditional comments, Web

designers finally have a hack they can feel good about—a filter straight from
the browser developers.

Recent versions of Internet Explorer have included the ability to condition-
ally include code. The conditions are evaluated according to the type of
browser being used. This code used to apply this browser-detection feature
is referred to as a conditional comment. Windows versions of Internet
Explorer 5 and higher can detect and react to conditional comments.

Although such a focus on one browser may seem limiting, the current domi-
nance of the Internet Explorer browser makes the technology worth knowing.
Moreover, conditional comments provide an authorized path to correcting
CSS oversights in one specific browser version, or a range of versions. As
you’ll see in this chapter, you also have the ability to include code even if the
visiting browser is not a recent version of Internet Explorer.

About Conditional Comments
Microsoft incorporated the very aptly named conditional comments feature
in Internet Explorer starting with version 5. A conditional comment is an
HTML comment that determines whether the enclosed code is ignored or
read by the browser. Conditional comments provide built-in browser detec-
tion capable of detecting recent Internet Explorer major and minor versions
alike.

What does a conditional comment look like? Here’s a basic example:

<!--[if IE]>
<p>You’re using an Internet Explorer browser,
version 5 or later.</p>
<! [endif]-->

07_579851 ch04.qxd 5/4/05 10:47 PM Page 57

TEAM LinG

58 CSS Hacks and Filters: Making Cascading Style Sheets Work

Another use would be to conditionally attach a style sheet, like this:

<!--[if IE]>
<link href=”ie_styles.css” media=”screen” type=”text/css” />
<![endif]-->

The beauty of conditional comments is in the structure. Because the code is inside a standard
HTML comment tag, two benefits are gained. All browsers other than Internet Explorer 5 or
higher disregard both the code within the comment tag and whatever the code wraps around.
Recent Internet Explorer browsers, however, evaluate the code within the opening comment
tag ([if IE] in the example) and, if true, renders the code up to the closing comment tag. The
comment-based syntax ensures that, for the most part, conditional comments validate against
HTML and XHTML standards.

You’ll learn about the non-valid type of conditional comments in a section later in this chapter
titled “Working with Non–Internet Explorer Browsers.”

It’s important to realize that conditional comments are an HTML construct. Conditional
comments must be included in an HTML page and cannot be inserted in an external CSS
style sheet. The code enclosed by a conditional comment must also be HTML and not pure
CSS. To convey CSS information, you must use the style tag, like this:

<!--[if IE]>
<style type=”text/css”>
p { color: red; }
</style>
<![endif]-->

There’s no need for the traditional comment tags within the style tag itself. These comment
tags are used to hide the non-HTML CSS style declarations from older browsers, a problem that
Internet Explorer 5 and higher does not have.

Microsoft uses the term uplevel browser to refer to any browser that supports conditional com-
ments. Internet Explorer 5.x and Internet Explorer 6.x for Windows are uplevel browsers. The
term downlevel browsers refers to any other browser, whether it’s from an earlier version of
Internet Explorer or from another company.

The implementation of conditional comments is another discrepancy between the Windows and
Macintosh versions of Internet Explorer browsers. Even though Internet Explorer 5 for the
Macintosh was released a year after the equivalent Windows version, conditional comments are
not supported on the Mac. In other words, Internet Explorer 5 for the Macintosh is considered to
be a downlevel browser.

Although the focus of this chapter is on surrounding style tags and CSS declarations with con-
ditional comments, keep in mind that conditional comments can also be used for any HTML
code on the page.

07_579851 ch04.qxd 5/4/05 10:47 PM Page 58

TEAM LinG

59Chapter 4 — Applying Conditional Comments

Showing/Hiding Styles from Individual Versions
Conditional comments can be targeted just as precisely (or as broadly) as necessary. You can
reveal or disguise CSS styles from Internet Explorer versions 5, 5.5, and 6. You can even nar-
row the focus further to minor version numbers such as Internet Explorer 6.0290, the version
released with Windows XP Service Pack 2 (SP2).

It’s somewhat difficult to test conditional comments on different versions of Internet Explorer.
The best way to do it is to have multiple machines each with a different major version. If you
manage to install more than one version on the same system, Internet Explorer relies on the lat-
est version installed to view the conditional comments. For example, if you have both Internet
Explorer 5 and Internet Explorer 6 installed, you’ll only see conditional comments for Internet
Explorer 6 or greater, regardless of how you code your comments.

To show the code if a specific browser version is present, the conditional comment is written
with a major and minor version number, like this:

<!--[if IE 5.5]>
<style type=”text/css”>
h1 { text-decoration: none; }
</style>
<![endif]-->

This code results in two different outputs: a heading without an underline for Internet
Explorer 5.5 and a heading with an underline for every other browser, as shown in Figure 4-1.

FIGURE 4-1: The underline style in the conditional comment is
hidden from the top browser, Internet Explorer 6, and revealed
to the lower one, Internet Explorer 5.5.

07_579851 ch04.qxd 5/4/05 10:47 PM Page 59

TEAM LinG

60 CSS Hacks and Filters: Making Cascading Style Sheets Work

Although I’ve said that we’re targeting a specific browser version, this conditional comment
code returns true for any Internet Explorer version from 5.500 to 5.599. To be as specific as
possible, you’ll need to take the version number to four decimal places, like this:

<!--[if IE 5.500]>

Practically speaking, you’ll almost always never want to be this specific. Most corrections made
to the most minor of revisions are bug fixes and corrections for security issues, especially where
Internet Explorer is concerned. Generally, it’s better to target the major versions of Internet
Explorer, which, as of this writing, are 5, 5.5, and 6.

So far, you’ve only seen examples of revealing code if the specified browser is present. Hiding
code from a specific browser is an equally important technique. The key is to use the Boolean
Not operator (!) before the browser name and version number, like this:

<!--[if !IE 5.500]>
<style type=”text/css”>
h1 { text-decoration: none; }
</style>
<![endif]-->

This conditional comment is read “if this page is not viewed with Internet Explorer 5.5, apply
the following style.” Use this type of conditional comment when you need to hide CSS style
declarations from the specified browser version. As with other hacks or filters, you often need
to think of style rules in pairs when working with conditional comments.

Showing or Hiding a Range of Versions
Some CSS problems run across multiple versions of a browser. The Holly Hack, for example,
detailed in the Chapter 3 section “Revealing the Peekaboo Bug,” should be applied to Internet
Explorer versions 5.5 and 6 to fix common float bugs. With conditional comments, you can
address the desired range of Internet Explorer versions, like this:

<!--[if IE gte 5.5]>
<style type=”text/css”>
.innerDiv {height: 1%;}
</style>
<![endif]-->

The new element in the opening conditional comment tag (gte) is an operator. This particular
operator means greater than or equal to. Therefore, the conditional comment can be read “if
this page is viewed in an Internet Explorer browser, version 5.5 or higher, apply the following
style.”

Table 4-1 shows the operators available for use in a conditional comment.

07_579851 ch04.qxd 5/4/05 10:47 PM Page 60

TEAM LinG

61Chapter 4 — Applying Conditional Comments

Table 4-1 Conditional Comment Operators

Operator Description Example

gt Greater than <!--[if IE gt 5.5]>

gte Greater than or equal to <!--[if IE gte 5.5]>

lt Less than <!--[if IE lt 5.5]>

lte Less than or equal to <!--[if IE lte 5.5]>

! Not <!--[if !IE gte 5.5]>

Storing Conditional Comments Externally

Conditional comments are so effective at solving issues with Internet Explorer, you may find that
you’re using them on every page on your site. Because they are HTML-based, you’ll need to
ensure that the conditional comments are inserted on each page—which can be a management
nightmare if any changes need to be made. An alternative approach is to keep the conditional
comments in an external file and add them to your page as a server-side include (SSI).

The SSI file must contain only the necessary conditional comments code; no additional HTML
structural tags like html, head, or body should be present. The file can be saved anywhere
within the site. (I like to store mine in my styles folder along with the standard CSS files.) The
syntax for the SSI depends on where you store your file. If you save the SSI file in the same
folder as the page referencing it, use the file attribute, like this:

<!-- #include file=”cc_ie55.inc”

The file attribute should be used whenever you want to specify an include relative to the cur-
rent page. To refer to a file relative to the site root, use the virtual attribute:

<!-- #include virtual=”/styles/cc_ie55.inc”

Pages including SSIs must be capable of processing server commands. Typically, either an appli-
cation server such as ASP, ASP.NET, ColdFusion, or PHP is used, or the page is saved with an
.shtm or .shtml extension. The latter technique indicates to the Web server that, when
requested, any server commands in the page must be executed before the page is served.

You might find it helpful to maintain a library of commonly used conditional comments in SSI
format. Use meaningful file names or comments within the file to remind yourself of the condi-
tional comments’ functions.

07_579851 ch04.qxd 5/4/05 10:47 PM Page 61

TEAM LinG

62 CSS Hacks and Filters: Making Cascading Style Sheets Work

The Boolean Not operator can be combined with any other operator to exclude a range of
browsers.

The same rules of browser version specificity covered in the previous section on showing or
hiding for an individual browser apply to a browser range. If, for example, you wanted to hide a
rule from all browsers from Internet Explorer 5.0 up to, but not including Internet Explorer 6
for SP2, the first line of your conditional comment would look like this:

<!--[if IE lt 6.0290]>

Working with Non–Internet Explorer Browsers
A variation of the conditional comments syntax can be used to insert styles for browsers other
than those specified—including browsers not from Microsoft. Recall that Internet Explorer 5
and above are referred to as uplevel browsers whereas all others are labeled downlevel. The fol-
lowing syntax applies a style for all downlevel browsers:

<!--[if !IE]>
<style type=”text/css”>
#floatBox {

margin-left: 50px;
}</style>
<![endif]-->

Although the code looks similar to a standard conditional comment, there is one major differ-
ence: the enclosing tag is not an HTML comment. The dashes are missing from both the
opening and closing tags. This code then becomes a proprietary tag and will not validate under
either HTML or XHTML specifications. It will, however, render in every intended browser.

Here’s how it works. If an uplevel browser views the page with this type of code, it evaluates the
conditional statement, just as if it were a standard conditional comment, and reacts accordingly.
Downlevel browsers, on the other hand, do not recognize the <![if... > or <![endif]>
tag syntax and ignore those tags while processing the enclosed HTML. In the example shown
in Figure 4-2, the standard margin-left setting for the floating box (2 pixels) is applied to
Internet Explorer 6, while the downlevel browser (Firefox) uses the much larger margin-
left of 50 pixels, as specified in the conditional comments code.

When working with the downlevel variety of conditional comments, your conditional state-
ment is always going to use the Boolean Not operator (the exclamation point). While its pri-
mary purpose is to define styles for downlevel browsers, you could also include one or more
uplevel browser versions in your conditional statement. For example, if you wanted to set a CSS
declaration to work with all downlevel browsers and Internet Explorer 5.0, your conditional
comment code would look like this:

<--![if !IE gte 5.5]>
<style type=”text/css”>
h1 { color: blue; }
}</style>
<![endif]-->

07_579851 ch04.qxd 5/4/05 10:47 PM Page 62

TEAM LinG

63Chapter 4 — Applying Conditional Comments

The comment-less nature of this conditional comment would force downlevel browsers like
Netscape Navigator, Mozilla Firefox, Safari, and even Internet Explorer 5 for Macintosh to set
the enclosed CSS declararation, but it would also have the same effect on all Internet Explorer
versions below 5.5.

FIGURE 4-2: Although developed by Microsoft, you can use a special
syntax of conditional comments to have an effect in browsers other
than Internet Explorer.

Practical Applications of Conditional Comments
Now that you understand how conditional comments are used, you can put them to work. The
following five CSS bugs are all related to one or more modern versions of Internet Explorer. All
of these problems have been discussed, each with their own CSS hack solution, in Chapter 3.
These conditional comments–only resolutions provide a viable alternative, using officially sanc-
tioned code.

Three-Pixel Gap
The 3-pixel gap bug typically strikes when designers have oh-so-carefully figured out the
proper dimensions for a layout—only to have this Internet Explorer explode their design. This
bug often emerges when a layout calls for a floated element (an image or div tag) that is

07_579851 ch04.qxd 5/4/05 10:47 PM Page 63

TEAM LinG

64 CSS Hacks and Filters: Making Cascading Style Sheets Work

placed next to another content div. Both elements are wrapped by a div that is set to the
exact width needed: the width of the float plus the width of the content div plus the width
of any left or right margins, paddings, or borders. In this example, that width is 502.

#floatLeft {
float: left;
background-color: #0099FF;
width: 200px;

}
#content {

width: 300px;
border: 1px solid #000000;
margin-left: 200px;

}
#wrapper {

width: 502px;
border: 1px solid #FF0000;

}

Internet Explorer mistakenly adds a 3-pixel gap between the float and the content div.
Because the wrapper div is the exact required width, these additional 3 pixels cause the
content div to fall below the float—ruining the design, as shown in Figure 4-3.

FIGURE 4-3: Internet Explorer’s unwarranted extra 3 pixels throw
this design out of whack.

07_579851 ch04.qxd 5/4/05 10:47 PM Page 64

TEAM LinG

65Chapter 4 — Applying Conditional Comments

If you can’t expand the wrapper div (and often this is the precise size needed graphically),
you must adjust both the right margin of the float and the left margin of content div. You’ll
actually compensate for the additional 3 pixels by declaring a negative margin-right value:
–3. To make sure the two divs butt up against one another, the content div’s left margin
should be set to 0. Because these changes would wreak havoc on other browsers, a conditional
comment is used to apply only to all recent versions of Internet Explorer browsers.

<!--[if IE]>
<style type=”text/css”>
#floatLeft {

margin-right: -3px;
}
#content {

margin-left: 0px;
}
</style>
<![endif]-->

The difference, as shown in Figure 4-4, is dramatic.

FIGURE 4-4: Adjusting both the right margin of the float and the left
margin of the content div in a conditional comment does the trick.

Italics Float Bug
All the various elements that go into making a page are intricately intertwined—especially
when it comes to CSS. Another float-related bug is triggered by the one of the least likely sus-
pects: italics. With Internet Explorer 5.5 and 6, a floating container with italicized text is wider

07_579851 ch04.qxd 5/4/05 10:47 PM Page 65

TEAM LinG

67Chapter 4 — Applying Conditional Comments

As always, the conditional comments are placed in the head region, after the external style
sheets are attached. The resulting page puts all the elements in their proper place while staying
true to your intended style, as shown in Figure 4-6.

FIGURE 4-6: Making the overflow visible stops floated containers
from exceeding their intended width in Internet Explorer 5.5 and 6,
regardless of the text formatting.

According to one source, The Nemesis Project (http://nemesis1.f2o.org), Internet
Explorer 5 also has a similar problem, but a different solution. Rather than declare over-
flow:visible, the solution for Internet Explorer 5 is to apply overflow:hidden. Although
I was not able to verify the problem, if you encounter it, the fix is to include another conditional
comment, directed at Internet Explorer 5 only:

<!--[if IE 5.0]>
<style type=”text/css”>
#floatLeft {

overflow: hidden;
}
</style>
<![endif]-->

First Letter Bug
Occasionally, a design calls for a heading within a relatively sized container, one that changes
size to stay proportional to the width of the screen. If that same design requires letter spacing,
your heading will lose its head in Internet Explorer 5.5—the first character vanishes, as shown
in Figure 4-7.

07_579851 ch04.qxd 5/4/05 10:47 PM Page 67

TEAM LinG

68 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 4-7: You’d never know that part of your text was missing, unless you
tested your page in Internet Explorer 5.5.

Although the design specifications may not be that common, if your design has these require-
ments, you’ll definitely need a fix for Internet Explorer 5.5. The two CSS style declarations
used in the example are as follows:

.container {
background-color: #CCCCCC;
margin: 15px 20%;

}
.innerArea {

border: 1px solid #000000;
position: relative;
letter-spacing: .25em;
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 2.5em;
color: #006600;

}

The key triggers that cause this problem are the combination of position:relative and
letter-spacing: .25em in the innerArea class and the styles assigned (or, rather, not
assigned) to the outer container class. A number of possible solutions are available that
would fix this issue for Internet Explorer 5.5, most of which center around defining a style for
the container (either a border-top or padding-top will work) that makes Internet
Explorer draw the inner section correctly.

The least-intrusive method that I have found is to assign a 1-pixel top border to the outer con-
tainer and color it the same as the background color. While this obviously does not have an
enormous impact on the design, any intrusion like this is best to limit to where it is absolutely
necessary. With an appropriately applied conditional comment, the fix can be targeted just
where it is needed, Internet Explorer 5.5:

<!--[if IE 5.5]>
<style type=”text/css”>
.container {

border-top: 1px solid #FFFFFF;
}
</style>
<![endif]-->

07_579851 ch04.qxd 5/4/05 10:47 PM Page 68

TEAM LinG

69Chapter 4 — Applying Conditional Comments

Once applied, the first letter is restored to its proper place—and the impact is minimal, as
shown in Figure 4-8.

FIGURE 4-8: Although the 1-pixel top border solution is not ideal, it does fix
a major problem with a minimum amount of design variation.

07_579851 ch04.qxd 5/4/05 10:47 PM Page 69

TEAM LinG

07_579851 ch04.qxd 5/4/05 10:47 PM Page 70

TEAM LinG

Scripting JavaScript
and Document
Object Model Hacks

JavaScript has long been a partner in the Web’s development. Even with
CSS in full flower, most common Web effects (such as rollover buttons,
expanding/collapsing menus, and calendars, to name a few) are created

with JavaScript. As a script-based language, JavaScript can be programmed
with nothing more than a text editor. With its low entry barrier, vast library
of code, and enormous support community, JavaScript is a multipurpose
tool for the savvy Web designer. Best of all, JavaScript plays exceedingly
well with CSS.

The standard CSS designs are, at most, two-dimensional: one dimension
consists of the default style applied by the designer. Many pages stop there,
but others add a second dimension of interactivity, and allow users to pick
an alternative style sheet or alter basic elements such as text size. With
JavaScript, you can take CSS to the third dimension: programmability.
Given any designer-chosen trigger, JavaScript can alter the style of any
identifiable element on the page. You could, for example, highlight an
answer in a quiz if answered correctly, or reveal a help screen for wrong
answers.

The Document Object Model (DOM) is the lifeblood of JavaScript.
Through the DOM, JavaScript can get and set values for virtually any page
element’s properties, including its style. This valuable knowledge can easily
be put to use to fine-tune your CSS.

Although some designers resist using JavaScript because users can disable
the feature in their browsers, for me there’s just too much power here to
ignore. Unless your statistics strongly indicate that a large portion of your
site’s audience does not use JavaScript, you should use it. In this chapter, you
see how to determine which browser is currently being used and how to
serve the proper style sheet. You also learn techniques for programmatically
altering styles to lend more flexibility and power to your navigation and/or
page elements.

˛ Dynamically
Loading Style
Sheets

˛ Switching Style
Sheets with the
DOM

˛ Style Value
Switching for
Interactivity

chapter

in this chapter

08_579851 ch05.qxd 5/4/05 10:55 PM Page 71

TEAM LinG

72 CSS Hacks and Filters: Making Cascading Style Sheets Work

Dynamically Loading Style Sheets
Browser sniffing is a long-established JavaScript practice. Before CSS came to the forefront,
Web developers had to cope with a plethora of browsers, each with its own mix of standard
HTML and proprietary tags. Many designers found creating multiple versions of their sites to
be an onerous, but necessary, task. Which version of the site was served to the visitor depended
on JavaScript code to detect the browser version and redirect accordingly.

The Web has grown wildly in intervening years, and the creation and ongoing maintenance
of browser-specific site editions is no longer efficient or necessary. With the rise of standards-
compliant browsers, more and more designers have switched to using CSS—a switch that
JavaScript is ready to help with. Today, browser sniffers are largely used to detect the current
browser so that the proper style sheet can be employed. Maintaining a series of style sheets is
far more feasible than keeping up with the updates for a number of variations of an entire site.

Determining Browsers with JavaScript Objects
Two basic approaches to detecting browsers exist. One method depends on the idiosyncrasies
of individual browsers and their support of JavaScript objects. This method looks to see if one
or more specific objects are supported by the browser currently being used. Depending on the
answer, you can figure out the browser name and version. For example, Netscape 4 is the only
browser that supports the document.layers object, and so this type of code is possible:

if (document.layers) {
// Netscape 4 code goes here

}

By calling the JavaScript object itself, either true or false is returned. If true is returned, the
object is supported; if false is returned, it’s not.

Table 5-1 shows a breakdown of objects and browser support.

Table 5-1 JavaScript Objects in Browsers

JavaScript Object Found in Browser

document.images Netscape 3 or above, Internet Explorer 4 or above

!document.images Netscape 2, Internet Explorer 3

document.layers Netscape 4

document.all Internet Explorer 4 or above

document.getElementById Internet Explorer 5 or above, Netscape 6 or above

document.getElementById && Netscape 6 or above
!document.all

08_579851 ch05.qxd 5/4/05 10:55 PM Page 72

TEAM LinG

73Chapter 5 — Scripting JavaScript and Document Object Model Hacks

Reading the userAgent Property
The second technique relies on a long-time property of the JavaScript navigator object,
userAgent. When you get the navigator.userAgent value, a long string is returned that
contains information about the computer platform, the operating system, the browser layout
engine, and the browser name, complete with version number.

For example, here’s what navigator.userAgent returns when I browse a page with my PC:

Mozilla/5.0 (Windows; U; Windows NT 5.1; rv:1.7.3) Gecko/20041001
Firefox/0.10.1

And here’s what I get when I browse the same page from my Macintosh:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/125.2.2
(KHTML, like Gecko) Safari/125.8

To make use of all this information, you’ll need to do some additional processing to extract
the required data. The typical method is to use JavaScript’s indexOf() function to search the
userAgent string looking for a particular value. Here’s one technique:

var theUA = navigator.userAgent.toLowerCase();
isSafari = (theUA.indexOf(‘safari’) != -1);

With this code, the string returned by navigator.userAgent is first converted to lower-
case to simplify searching, and then assigned to a variable called theUA. Then, that variable is
searched for a substring, safari, which, if found, sets another variable, isFirefox, to true.
Retrieving the version number is a little more complex and varies from browser to browser. As
an example, here’s how you would get the current Safari version number:

if (isSafari) {
theVersion = parseFloat(theUA.substring(

theUA.lastIndexOf(‘safari/’) + 7));
}

Here, the substring() function extracts the number values after the term safari/ and
then converts it to a number with the parseFloat() function. It’s important that the version
be in number format so that you can use operators such as less than (<) and greater than (>) to
identify the range of browsers. If, for example, you wanted to find out if the current browser
was Safari 1.2 or higher, you could use code like this:

isSafari1_2up = (isSafari && theVersion >= 1.2)
if (isSafari1_2up) {
// Safari 1.2 code goes here

}

The && symbol is the JavaScript AND operator, so the variable isSafari1_2up evaluates to
true only if both statements—isSafari and theVersion >= 1.2—are true.

Many browser-detection scripts on the Web use the userAgent method. One of the best I’ve
found is by Chris Nott (www.dithered.com) whose Browser Detect script is available under
the Creative Commons license.

08_579851 ch05.qxd 5/4/05 10:55 PM Page 73

TEAM LinG

74 CSS Hacks and Filters: Making Cascading Style Sheets Work

As of this writing, Chris’s script is a little out of date (for example, it checks for the original name
for Firefox, Firebird), so I’ve put a more current version on my site at www.idest.com/css_
hacks/files/ch05/browser_detect.js.

So, which of the two techniques—JavaScript object or userAgent—should you use?
Although the JavaScript object typically results in more elegant, compact code, I think it’s less
appropriate for use when setting a style sheet and better suited to more specific programming
tasks like determining whether a specific JavaScript function used on the page is available.
Moreover, you must keep a constant eye out for browser updates to ensure that availability of a
particular JavaScript object has not changed status. The userAgent method, on the other
hand, while more verbose, is geared toward identifying particular browser versions—a skill
highly valued when defining the proper style sheet.

Identifying Opera

Although it has never gained tremendous market share, Opera has long been a favorite browser
of many Web designers, especially because of its early and consistent support of CSS. One spe-
cial feature of Opera is important to note when talking about JavaScript browser detection. To
overcome the problem of a browser being blocked from a site if it is not Internet Explorer or
another browser, in recent versions the Opera engineers have included a user-selectable prefer-
ence that allows the browser to disguise itself as a different browser. The disguise takes the form
of outputting a different userAgent string than normal. Here’s how the browser identifies itself
if the preference is set to Identify as Opera:

Opera/7.54 (Windows NT 5.1; U) [en]

However, here’s what Opera outputs as the default userAgent string:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1) Opera 7.54 [en]

In its default setting, Opera appears to most Web pages as Internet Explorer 6. Other prefer-
ence settings allow Opera to appear as Mozilla 5, 4.78, or 3.

The good news for designers looking to identify Opera correctly for CSS purposes is that regard-
less of the preference setting, Opera’s userAgent string always contains the name “Opera” fol-
lowed by the version number. When adding code to detect the correct browser, make sure that
your JavaScript parses the userAgent string instead of relying on another JavaScript property of
the navigator object, appName. If your detection script includes code like this, Opera users are
likely to be served an incorrect style sheet:

var browserName = navigator.appName

The Browser Detect script from Chris Nott referenced in this chapter
handles Opera properly.

08_579851 ch05.qxd 5/4/05 10:55 PM Page 74

TEAM LinG

75Chapter 5 — Scripting JavaScript and Document Object Model Hacks

Styling for a Detected Browser
Once you’ve determined which browser is being used, how do you serve the appropriate style
sheet? A variety of techniques are available, but perhaps the most common is to rely on the
JavaScript function document.write():

document.write(‘<link rel=”stylesheet” type=”text/css”
href=”mainNS4.css”>’);

The same function can be used to dynamically insert the @import tag:

document.write(‘@import url(“styles/mainIE.css”);’);

The document.write() function is put to work in a series of conditional statements or if-
then-else clauses. The if-then-else code block cycles through each of the browser-detection
statements and, when the current browser is identified, inserts the desired style sheet. Once the
style sheet has been dynamically written into the Web page, the code block is exited. Here’s a
complete code example that first includes a browser-detection script:

<script type=”text/javascript”
src=”../includes/browser_detect.js”> </script>
<script language=”JavaScript”>
<!--
if (browser.isNS4) {
document.write(“<link REL=’stylesheet’ HREF=’mainNS4.css’

TYPE=’text/css’>”);
} else if (browser.isIE5xMac) {
document.write(“<link REL=’stylesheet’ HREF=’mainIE5xMac.css’

TYPE=’text/css’>”);
} else if (browser.isIE55) {
document.write(“<link REL=’stylesheet’ HREF=’mainIE55.css’

TYPE=’text/css’>”);
} else if (browser.isIE5) {
document.write(“<link REL=’stylesheet’ HREF=’mainIE5.css’

TYPE=’text/css’>”);
} else if (browser.isIE6up) {
document.write(“<link REL=’stylesheet’ HREF=’mainIE6up.css’

TYPE=’text/css’>”);
} else if (browser.isSafari) {
document.write(“<link REL=’stylesheet’ HREF=’mainSafari.css’

TYPE=’text/css’>”);
} else if (browser.isOpera) {
document.write(“<link REL=’stylesheet’ HREF=’mainOpera.css’

TYPE=’text/css’>”);
}
// -->
</script>

The order in which the various browsers are checked is significant. If you’re trying to distin-
guish between two or more different browsers that share a major version number, the rule of
thumb is to list the selections from the more specific to the more general. You’ll notice in the
preceding code that the checks for Internet Explorer version 5 are in this sequence:

08_579851 ch05.qxd 5/4/05 10:55 PM Page 75

TEAM LinG

76 CSS Hacks and Filters: Making Cascading Style Sheets Work

} else if (browser.isIE5xMac) {
...
} else if (browser.isIE55) {
...

} else if (browser.isIE5) {

Because the JavaScript processing stops after an if clause is found to be true, it’s crucial that
the condition is not satisfied too early. If the order were reversed, both Internet Explorer 5 on
the Macintosh and Internet Explorer 5.5 browsers would be served the Internet Explorer 5
style sheet.

Switching Style Sheets with the DOM
Previously, you saw how to use JavaScript to automatically serve a specific style sheet based on
the current browser. In this section, the focus is on giving users the power to switch between
alternative style sheets. This type of control is particularly helpful when designing sites with
accessibility requirements in mind. You can, for example, create a style sheet with higher con-
trasts or larger font sizes to make it more readable for particular users. To enable this type of
programmatic styling, you’ll need to work with the Document Object Model.

The DOM is a W3C-supported standard, implemented by the current crop of browsers. This
standard is supported by most recent browsers, including Internet Explorer 5 and above,
Netscape 6 and higher, and Opera 7.x, as well as all versions of Mozilla, Firefox, and Safari.

Understanding the DOM Structure

Every tag in a Web page (including structural tags such as html, head, and body) is a type of
node in the DOM called an element node. The content within element nodes are also nodes—
either other element nodes, text nodes, or comment nodes. This type of structure is often
described in parent-child terms: the html node is the parent of both the head and body nodes,
while the head and body nodes are said to be children nodes, which, in turn also have children.

It’s important to understand how the DOM relationship is structured so you can develop code
that is not page-specific. You can, for example, examine any node to see if it contains child
nodes or do the reverse to see what parent nodes are above the current node. Whichever direc-
tion you proceed, this process is called walking the tree. Through functions of this type, you can
control the style on an individual tag level, if necessary. For example to reference the body tag
via the DOM, you use this code:

document.body

08_579851 ch05.qxd 5/4/05 10:55 PM Page 76

TEAM LinG

77Chapter 5 — Scripting JavaScript and Document Object Model Hacks

The DOM provides a structural tree-like view of a Web page where each branch of the tree
(referred to as a node) can be examined and, in most cases, modified. JavaScript is used to
address and, if desired, interact with each node. With style sheet switching, you’ll be changing
an attribute within nodes representing link tags.

To change style sheets, you’ll need to set up a series of link tags to the available style sheets.
Typically, style sheets are used in three different ways:

� Base style sheet—Contains styles common to all style sheets.

� Initial style sheet—Defines the default styles the user sees when first visiting the page.

� Alternate style sheet—Provides alternative styles that can be chosen by the visitor.

(Although this could also be written window.document.body, the window explicit reference is
often dropped because it is understood by JavaScript.) The first tag (or child node) within the
body is then referred to like this:

document.body.childNodes[0]

The DOM, like JavaScript, uses zero-based arrays, so the first element in an array is referenced
with a 0, the second with 1, and so on.

Another key concept is the use of a DOM method, getElementsByTagName(), to gather all
the tags of a particular type. For example, to put all the div tags in a document into an array,
use code like this:

var theDivs = document.getElementsByTagName(‘div’);

Now each element in the array can be searched for a particular attribute (such as class) by
looping through the array:

for (i=0; i < theStyles.length; ++i) {

if (theStyles[i].getAttribute(‘class’)== ‘legal’) {

//Re-style the all the div tags with a legal class style

}

}

If you know the id attribute of a tag you want to modify, you can find it directly with another
method, getElementById():

var theFooter = document.getElementById(‘footer’);

Advanced DOM techniques include modifying text nodes on the fly, creating new nodes of any
type, and removing existing nodes.

08_579851 ch05.qxd 5/4/05 10:56 PM Page 77

TEAM LinG

78 CSS Hacks and Filters: Making Cascading Style Sheets Work

When the links are inserted in the page, you’ll need to use slightly different attributes for each
of the three different types. The JavaScript function accesses the DOM to examine the rel
and title attributes; only link tags with both of these attributes can be switched. To ensure
that the base styles are always applied (regardless of the user’s choice), the title attribute is
left out of the link to the base style sheet, and the relation to the page (the rel attribute) is
listed as stylesheet:

<link href=”../../css/basestyles.css” rel=”stylesheet”
type=”text/css” />

The initial style sheet, on the other had, includes the title attribute with the identifying
value of default; again the rel attribute is set to stylesheet:

<link href=”../../css/default.css” rel=”stylesheet”
type=”text/css” title=”default”/>

Combined, the base and default style sheets create one look, as shown in Figure 5-1.

FIGURE 5-1: Whenever the visitor first enters the page, the base
and default style sheets are applied.

The alternative style sheets use a different rel attribute—alternate stylesheet. This
value identifies them as user-selectable style sheets to compliant browsers and allows users
to change style sheets via the menu. Unfortunately, not many users are aware of this option.
In addition the title attribute is used to identify each style sheet differently. This same
title will be used in the JavaScript function to enable the desired style sheet while disabling
all others:

<link href=”../../css/stylesheet1.css” rel=”alternate stylesheet”
type=”text/css” title=”stylesheet1” />
<link href=”../../css/stylesheet2.css” rel=”alternate stylesheet”
type=”text/css” title=”stylesheet2” />

08_579851 ch05.qxd 5/4/05 10:56 PM Page 78

TEAM LinG

79Chapter 5 — Scripting JavaScript and Document Object Model Hacks

<link href=”../../css/stylesheet3.css” rel=”alternate stylesheet”
type=”text/css” title=”stylesheet3” />

The individual links that trigger the style sheet changes rely on the onclick event to call a
custom JavaScript function called switchStyle(). The argument passed in the function call
corresponds to the title attribute in the link tag. Here are two examples:

<a href=”javascript:;” onclick=”switchStyle(‘default’); return
false”>Default Stylesheet
<a href=”javascript:;” onclick=”switchStyle(‘stylesheet1’); return
false”>Stylesheet 1

The return false function added to each onclick event stops the browsers from attempt-
ing to load a linked page found in the href attribute. If you don’t prevent this action, some
browsers jump to the top of the page, in addition to performing the JavaScript function.

When executed, the switchStyle() function runs through this sequence:

1. When the function is called, an argument is established to hold the title passed to it by
the onclick event of the links.

function switchStyle(title)

2. After declaring two variables, one variable—theLinks—is assigned an array of all the
link tags through the use of the DOM method getElementsByTagName(). (See
the sidebar “Understanding the DOM Structure” earlier in this chapter for more details
on this method.)

var i
var theLinks = document.getElementsByTagName(“link”)

3. A loop is established that cycles through each of the link tags in the array.

for(i=0; i < theLinks.length; i++)

4. Each link tag is checked to see if two conditions are true: that the rel attribute
includes the string style and that a title attribute exists.

if(theLinks[i].getAttribute(“rel”).indexOf(“style”) != -1 &&
theLinks[i].getAttribute(“title”))

5. If both conditions are met, the link tag is first disabled.

theLinks[i].disabled = true;

6. If the title, however, matches the argument passed by the function, the current link tag
being examined is enabled.

if(theLinks[i].getAttribute(“title”) == title)
theLinks[i].disabled = false;

7. After all the link tags have been examined—and disabled, with the one requested
enabled—the function ends.

08_579851 ch05.qxd 5/4/05 10:56 PM Page 79

TEAM LinG

80 CSS Hacks and Filters: Making Cascading Style Sheets Work

Here’s the code listing in its entirety:

function switchStyle(title) {
var i
var theLinks = document.getElementsByTagName(“link”)
for(i=0; i < theLinks.length; i++) {
if(theLinks[i].getAttribute(“rel”).indexOf(“style”) != -1 &&

theLinks[i].getAttribute(“title”)) {
theLinks[i].disabled = true;
if(theLinks[i].getAttribute(“title”) == title)

theLinks[i].disabled = false;
}

}
}

You can see the two results of the function at work in Figure 5-2 and Figure 5-3. To see this
page in action, visit www.idest.com/css_hacks/pages/chapter_05/
stylesheet_switch.htm.

FIGURE 5-2: Stylesheet 1 has a different background, different
fonts, and coloring than the default style sheet.

You can trigger multiple style sheets by giving each of them the same title value.

A further enhancement to this technique would be to remember the user’s style sheet preference
and restore it the next time he or she visited the site. Typically, this functionality is achieved
through the use of cookies. You could easily incorporate a bit of code to store the title of the last
chosen style sheet in a cookie, and then use another function to check for the cookie whenever
the page is loaded.

08_579851 ch05.qxd 5/4/05 10:56 PM Page 80

TEAM LinG

81Chapter 5 — Scripting JavaScript and Document Object Model Hacks

FIGURE 5-3: Stylesheet 2 exemplifies the use of a larger font
with a greater contrast.

Another use for this same style sheet–switching technique is to provide an on-screen font size
selector. Although most modern browsers provide a menu option for changing the font size, it’s
often left unfound and unused by browser users; more importantly, browsers take a shotgun
approach to changing font sizes. With individual style sheets, you can more tightly control how
the increase or decrease of given content is handled; you can even change background images
to handle different content requirements.

Style Value Switching for Interactivity
One of the most effective combinations of JavaScript and CSS is centered on div tag style
with CSS positioning. div tags have gained tremendous popularity in programs such as
Macromedia Dreamweaver and Adobe GoLive because of their flexibility: div tags can be
hidden or revealed, change position on the screen, and even appear behind or in front of other
div tags. Most importantly, all of this activity can be placed under user control.

The basic tool is, once again, the DOM. Through the DOM, individual style attributes can be
altered from one value to another. The key is to pinpoint the exact attribute within the desired
div tag you want to change. For this reason, it’s best to work with ID-defined styles for your
div tags rather than class selectors. Even if you are acting on a group of div tags (as is the
case in the upcoming example), you often don’t want to change the same attribute to exactly
the same value for all tags.

08_579851 ch05.qxd 5/4/05 10:56 PM Page 81

TEAM LinG

82 CSS Hacks and Filters: Making Cascading Style Sheets Work

The JavaScript code specifies the style attribute for the tag you want to change and a new
value. For example, if I wanted to move a 300-pixel-wide div tag named sideNav to the
left so that only 10 pixels are showing, I would use code like this:

document.getElementById(‘sideNav’).style.left = “-290px”;

As you can see, the DOM getElementById() method is used to declare the desired div
and the left CSS style property is specified. Note that a negative margin is declared to move
more of the div tag off the page.

This particular technique requires DOM-compliant browsers such as all Mozilla-based browsers,
Internet Explorer 5 and above, Safari 1.2 and higher, and Opera 7.5. You can, with a minor
amount of manipulation, also address Netscape 4 browsers.

Any such combination of CSS and JavaScript will require four primary elements:

� CSS styles—Used to define the styles for the div tags. Any type of CSS style (inline,
in-page, or defined in an external style sheet) can be used.

� div tags—The styled containers that are manipulated by the JavaScript.

� JavaScript functions—Code that modifies elements of the DOM when triggered.

� Event handlers—JavaScript methods inserted into an anchor tag, a, to call the required
JavaScript function. Typical event handlers are onClick, onMouseOver, and
onMouseOut.

To demonstrate how these parts work together, following is a look at how a sliding sidebar
(often used to show and hide navigation) is constructed.

If you want to see how this page works, visit www.idest.com/css_hacks/pages/
chapter_05/slide_side.htm. To keep the concepts clear and the code simple, this page is
only intended for DOM-compliant browsers.

The idea for this example is to have a single navigation area that slides mostly off the page
when an HTML link within a div is clicked. In addition to moving the navigation section
off-stage, a previously hidden div with a second link is revealed while the first link is hidden.
The process is reversed when the second link is clicked: the navigation area moves to its origi-
nal position and the second link is hidden while the first is revealed again (see Figure 5-4).

The first task is to construct the needed CSS styles. For this task, you’ll need one for each div
tag: the navigation area, the handle that shows when the navigation section is on the page, and
the handle that is displayed when the navigation area is off the stage.

#sideNav {
background-color: #FFFF66;
border: 1px solid #000000;
position: absolute;
height: 150px;
width: 300px;
left: 0px;

08_579851 ch05.qxd 5/4/05 10:56 PM Page 82

TEAM LinG

83Chapter 5 — Scripting JavaScript and Document Object Model Hacks

top: 60px;
z-index: 1;

}
#onHandle {

background-color: #FF0000;
position: absolute;
height: 20px;
width: 5px;
top: 120px;
left: 290px;
z-index: 10;
visibility: visible;

}
#offHandle {

background-color: #00FF00;
position: absolute;
height: 20px;
width: 10px;
top: 120px;
left: 291px;
visibility: hidden;
z-index: 10;

}

FIGURE 5-4: By combining CSS, JavaScript, and the DOM, you can
set the navigation area to slide in and out of the page at will.

The most important properties to notice here are those that deal with position, depth, and visi-
bility. Here, all three ID selectors are declared with the position property set to absolute;
it’s entirely possible to achieve the same effect with position defined as relative, but
absolute is more common. The depth is set with the z-index value; div tags styled with

08_579851 ch05.qxd 5/4/05 10:56 PM Page 83

TEAM LinG

84 CSS Hacks and Filters: Making Cascading Style Sheets Work

higher z-index values appear to be on top of those with lower z-index values. In this
example, the two handles are above the navigation area and have the same z-index. Because
they both are on the same plane, as it were, which one is seen is controlled by the visibil-
ity property. As you can see, the initial state is for the #onHandle style to be shown while
the #offHandle style is hidden.

Next, you’ll need to create the three div tags to host these styles. I’ve used simple X’s in the
handles to make the structure clearer—you could certainly substitute an image or other object:

<div id=”sideNav”>

Home
Products

Widgets
Gadgets
Gidgets

Services
About Us

</div>
<div id=”onHandle”>X</div>
<div id=”offHandle”>X</div>

Two different JavaScript functions are used to achieve the desired effect: slideSide() and
changeVisibility(). Each has a single argument to indicate a current relevant state. For
the slideSide() function, the argument dir indicates the direction requested, either in or
out. In the changeVisibility() function the divOn parameter tells which of the two
handle div tags should be shown. Here’s a look at the slideSide() function first:

function slideSide(dir) {
if (dir == “in”) {
document.getElementById(‘sideNav’).style.left = “-290px”;
document.getElementById(‘onHandle’).style.left = “0px”;
document.getElementById(‘offHandle’).style.left = “0px”;

} else { //direction is out
document.getElementById(‘sideNav’).style.left = “0px”;
document.getElementById(‘onHandle’).style.left = “290px”;
document.getElementById(‘offHandle’).style.left = “290px”;

}
}

As you can see, when the navigation area is to be moved in, the sideNav left style is set to a
negative value, moving it off the left side of the page. Additionally, both handles are set to the
edge of the page, where they remain visible.

The changeVisibility() function is similarly structured:

function changeVisibility(divOn) {
if (divOn == “onHandle”) {
document.getElementById(‘onHandle’).style.visibility =

“visible”;
document.getElementById(‘offHandle’).style.visibility =

“hidden”;

08_579851 ch05.qxd 5/4/05 10:56 PM Page 84

TEAM LinG

85Chapter 5 — Scripting JavaScript and Document Object Model Hacks

} else { //show offHandle
document.getElementById(‘onHandle’).style.visibility =

“hidden”;
document.getElementById(‘offHandle’).style.visibility =

“visible”;
}

}

It’s important to note that both of these functions are considerably specific to the page. If you
were designing these functions for more general use, additional arguments would be used to
indicate the IDs affected, as well as the values required.

The final step connects the styled div tags to the JavaScript functions. JavaScript event han-
dlers with the proper function calls are added to links within the onHandle and offHandle
div tags:

<div id=”onHandle”>
<a href=”#”

onclick=”slideSide(‘in’);changeVisibility(‘offHandle’)”>X
</div>
<div id=”offHandle”>
<a href=”#”

onclick=”slideSide(‘out’);changeVisibility(‘onHandle’)”>X
</div>

Figure 5-5 shows the page with the navigation area off-screen, ready to be moved back when-
ever needed. Additional enhancements could be added to move the sideNav div tag over
time, resulting in an animation effect.

FIGURE 5-5: A click on the link within the now-visible offHandle
div tag reverses the position of the navigation area, as well as
the visibility of the two handle sections.

08_579851 ch05.qxd 5/4/05 10:56 PM Page 85

TEAM LinG

08_579851 ch05.qxd 5/4/05 10:56 PM Page 86

TEAM LinG

Coding Server-Side
Solutions

Application servers take Web site development to a whole other level,
even where Cascading Style Sheets are concerned. All the top server
models (including ASP, PHP, and ColdFusion) provide mechanisms

to dynamically control the CSS output.

As you saw in Chapter 5, much of this same functionality is available
through JavaScript, but at a price: the user must have JavaScript enabled.
Server-side CSS processing ensures that the desired style sheet will be
delivered to all site visitors, regardless of their JavaScript settings.

Application servers are often used to serve particular content depending on
one or more variables. If a user is not authorized to view a requested page,
an alternative page is presented. If, on the other hand, another user with
administrative privileges browses to the same initial page, the page requested
is sent with additional administrator-only content. In this circumstance, the
variable is the login name (the same variable could easily be used to affect the
styling of a page). Such variables don’t have to be under user control. Server
variables, including the one containing the identifying name of the browser
version, may also be used to determine content.

This chapter discusses how to make each of the server models covered affect
the CSS in two ways: through both user-based variables and server variables.
The techniques are essentially the same for all the server models discussed,
but the particulars are quite different. Example methods are provided for the
top three server models: ASP, PHP, and ColdFusion.

Styling with ASP
Typically, an external style sheet linked into a page is given a content-
type of text/css in this manner:

<link href=”../styles/mainstyle.css” type=”text/css”

With ASP, the content-type parameter (an attribute that tells the
browser what kind of file is being included and, thus, how to handle it) can
be specified through the ContentType property of the Response object.

˛ Styling with ASP

˛ Controlling CSS
with PHP

˛ ColdFusion
Integration with
CSS

chapter

in this chapter

09_579851 ch06.qxd 5/4/05 10:53 PM Page 87

TEAM LinG

88 CSS Hacks and Filters: Making Cascading Style Sheets Work

This capability provides ASP developers with the power to specify an ASP page as an external style sheet,
thereby permitting the full range of ASP server-side processing. In this situation, the link tag would
look like this:

<link href=”../styles/mainstyle.asp” type=”text/css”

The ASP page linked as an external style sheet would then include the following code at the
top of the page:

<% Response.ContentType = “text/css” %>

Styles passed from a dynamically created page appear no different than those included from a
standard .css file, as shown in Figure 6-1.

FIGURE 6-1: Your visitors will never know that an .asp file is behind your CSS styles.

In my testing, I discovered that setting the ContentType property was not always necessary.
With IIS 5.0, the code can be left out of the dynamic CSS file and will still process properly.
However, I recommend keeping the code in the file to ensure forward-compatibility and cross-
compatibiltiy with other ASP servers.

Once you’re working with an ASP page as your style sheet, the entire world of dynamic pro-
cessing is available.

A browser-detection script (similar to the JavaScript routine illustrated in Chapter 5, in the
section, “Reading the userAgent Property”) can be constructed in ASP and included in the
style sheet, like this:

<!--#include file=”detectBrowser.asp”-->

09_579851 ch06.qxd 5/4/05 10:53 PM Page 88

TEAM LinG

89Chapter 6 — Coding Server-Side Solutions

Such browser detection would assign Boolean (true or false) values to variables like isIE6 or
isNS4, which, in turn, could then be used to specify styles. For example, the following code
excerpt reads the server variable HTTP_USER_AGENT and puts it into a string variable,
strUserAgent, which is then used to parse to see if the browser is Internet Explorer 6 or
Netscape 4:

<%
Dim strUserAgent
Dim isIE4, isIE5, isIE55, isIE6, isNS4, isNS6, isMoz, isSafari,
isFF

strUserAgent =
LCase(cstr(request.ServerVariables(“HTTP_USER_AGENT”)))

isIE4 = FALSE
isIE5 = FALSE
isIE55 = FALSE
isIE6 = FALSE
isNS4 = FALSE
isNS6 = FALSE
isFF = FALSE

If InStr(strUserAgent, “msie 6”) Then
isIE6 = TRUE

ElseIf InStr(strUserAgent, “mozilla/4”) Then
isNS4 = TRUE

End If
%>

The preceding code is greatly simplified and does not demonstrate testing for all browsers.

Once the browser is identified, another code routine sets the styles necessary for a given
browser:

<% If isIE6 %>
body {

font-family: Verdana, Arial, Helvetica, sans-serif;
color: #666666;

}
<% Else If isNS4 %>
body, div, p, blockquote, ol, ul, dl, li, dt, dd, td {

font-family: Verdana, Arial, Helvetica, sans-serif;
color: #666666;

}
<% End If %>

09_579851 ch06.qxd 5/4/05 10:53 PM Page 89

TEAM LinG

90 CSS Hacks and Filters: Making Cascading Style Sheets Work

Naturally, if you’d prefer to just switch from one style sheet to another, the variables returned
from your browser-detection script could easily be used to link to the desired style sheet. Here’s
an example:

<% If isIE6 %>
<link href=”../styles/mainstyleIE6.css” type=”text/css”
}
<% Else If isNS4 %>
<link href=”../styles/mainstyleNS4.css” type=”text/css”
}
<% End If %>

Another approach can be used in combination with the dynamically built style sheet to vary
styles according to user-based parameters. One technique is to read a previously defined session
variable into the style sheet. Suppose you want to present different styles for authorized view-
ers, according to their access level. Viewers with an access level of visitor would see a page
styled one way, while those with an administrator access level would see another. Typically,
the authorization level would be gathered from a recordset and held in a session variable (such
as authLevel). The ASP code in VBScript to get the current value of such a session variable
would be included at the top of the dynamic style sheet:

<%
Dim theLevel
theLevel = cStr(Session(“authLevel”))
%>

What possible impact could you hope to accomplish by changing styles? Although there are
many different possibilities, one very real option is to hide or show content. Suppose the Web
application being used has an entire level of text designed to help guide those new to the site.
In this scenario, the dynamically created style sheet might include a section like this:

<% If theLevel = “visitor” Then %>
.helpText { display: block; }
<% ElseIf theLevel = “administrator” %>
.helpText { display: none; }
<% End If %>

The result is pretty clear, as shown in Figure 6-2 and Figure 6-3.

Session variables are not the only way to affect CSS styles, although they may be the most
effective. You could also trigger styles based on previously stored cookies that are read directly
into the dynamically created style sheet.

It’s vital that the server-side code in your CSS file be correct. One little mistake in your ASP code
and none of the styles in the style sheet will render, regardless of whether or not they are altered
by the server-side code. I recommend you embed your styles in the head area, complete with
server-side code, until it is thoroughly debugged.

09_579851 ch06.qxd 5/4/05 10:53 PM Page 90

TEAM LinG

91Chapter 6 — Coding Server-Side Solutions

FIGURE 6-2: This browser window shows an example page where the
authorization level, stored in a session variable, is set to visitor.
Here the help text is exposed.

FIGURE 6-3: When another visitor with a higher authorization level
sees the page, the help text is hidden.

Controlling CSS with PHP
By default, a standard PHP Web page is identified with a MIME type of text/html. The
MIME type is also referred to as the content-type. When a CSS page is linked, the con-
tent-type is set to text/css through the type attribute in the link tag:

<link href=”../styles/main.css” rel=”stylesheet” type=”text/css” />

To execute PHP commands within a CSS file, you’ll need to link to a PHP page. On the
linked PHP page, you’ll also need to reset the content-type attribute to text/css
through the PHP header function, like this:

<?php header(“Content-type: text/css”); ?>

09_579851 ch06.qxd 5/4/05 10:53 PM Page 91

TEAM LinG

92 CSS Hacks and Filters: Making Cascading Style Sheets Work

With this minor bit of code placed as the first line of your external style sheet, you can execute
any PHP command, including taking advantage of the date/time functions. You could, for
example, display a different color scheme for Sundays:

<?php header(“Content-type: text/css”); ?>

#special {
font-family: Verdana, Arial, Helvetica, sans-serif;
color: #000000;
padding: 5px;
float: right;
height: 200px;
width: 100px;
border: thin solid #FF0000;

}
<?php if (date(“l”) == “Sunday”) {?>
#special {

color: #FFFFFF;
background-color: #FF0000;

}
<?php } ?>

Figure 6-4 shows the results of such a dynamic style sheet.

FIGURE 6-4: Change your style sheet on different days
of the week with PHP.

Another (potentially more widespread) approach would be to use PHP functionality to detect
the browser and react accordingly. In PHP, the userAgent property of the HTTP header is
accessible through the $HTTP_USER_AGENT variable. This string can be parsed to determine

09_579851 ch06.qxd 5/4/05 10:53 PM Page 92

TEAM LinG

93Chapter 6 — Coding Server-Side Solutions

which browser the page visitor is using with a function such as strpos(). For example, the
following code sets particular variables to true depending on whether Internet Explorer 6 or
Netscape 4 is found:

<?php
$strUserAgent = strtolower($HTTP_USER_AGENT)
if (strpos($strUserAgent, ‘msie 6’) == true) {
$isIE6 = true

} else if (strpos($strUserAgent, ‘mozilla/4’) == true) {
$isNS4 = true

}
?>

Naturally, this type of code functionality should be extended to embrace the full range of
browser versions.

With the browser known, that information can be used to load in the appropriate styles or style
sheets. In the latter situation, dynamically modified style sheets are not necessary, but can be
used if desired. Here’s how you might use variables returned from an included PHP browser
sniffer to serve the appropriate style sheet to an Internet Explorer 6 or Netscape 4 browser:

<?php if (isIE6) { ?>
<link href=”../styles/mainstyleIE6.css” type=”text/css”
}
<?php else if (isNS4) ?>
<link href=”../styles/mainstyleNS4.css” type=”text/css”
}
<?php } ?>

Within the dynamically generated style sheet, session variables or cookies could be used to vary
the design. As with the ASP example earlier in this chapter, content could be hidden or revealed
according to the authorization level of a logged-in user. In this scenario, helpful text is shown
only if the user has an authorization level of visitor as designated by the value of a session
variable named authLevel. The relevant code in the external PHP style sheet is as follows:

<?php header(“Content-type: text/css”); ?>

.helpText {
display: none;

background-color: #FFFF00;
}

<?php if ($_SESSION[“authLevel”]==”visitor”) { ?>
.helpText { display: block; }
<?php } ?>

Figure 6-5 and Figure 6-6 illustrate the two different conditions.

09_579851 ch06.qxd 5/4/05 10:53 PM Page 93

TEAM LinG

94 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 6-5: Users browsing the page with an authorization level
of visitor see helpful text.

FIGURE 6-6: Page viewers who have an authorization level other
than visitor do not see the supplementary text.

ColdFusion Integration with CSS
As with ASP and PHP, ColdFusion has a mechanism for creating external style sheets dynam-
ically. The same basic technique of linking to a dynamic page as the style sheet while using
server-side code to alter the page content-type is available in ColdFusion. Code like this is
used to link to the style sheet:

<link href=”../css/mainStyle.cfm” rel=”stylesheet” type=
”text/css” />

In the external style sheet, the following code is applied as the first line in the file:

<cfcontent type=”text/css”>

Once the cfcontent tag changes the content-type to text/css, the code resulting
from the server-side execution is treated as CSS. To illustrate the potential of this technique,
suppose your client wants to display different backgrounds to a page section depending on the
time of day: in the morning, a sunrise image is shown (see Figure 6-7), whereas in the evening,
a sunset image displays (see Figure 6-8). A separate image is used for other times.

09_579851 ch06.qxd 5/4/05 10:53 PM Page 94

TEAM LinG

95Chapter 6 — Coding Server-Side Solutions

FIGURE 6-7: Visitors to the site from 5 a.m. until 11 a.m. will see a sunrise image.

FIGURE 6-8: Should the same visitors come back from 5 p.m. until 11 p.m.,
they’ll see a sunset graphic.

<cfcontent type=”text/css; charset=ISO-8859-1”>

#header {
background-image: url(../../images/standard.jpg);
background-repeat: no-repeat;
padding: 5px;
height: 140px;
width: 100%;

}

<cfset currentHour=DatePart(“h”, Now())>
<cfif currentHour GTE 5 AND currentHour LTE 12> #header {
background-image: url(../../images/sunrise_wide.jpg);

}
</cfif>
<cfif currentHour GTE 17 AND currentHour LTE 21> #header {
background-image: url(../../images/sunset_wide.jpg);

}
</cfif>

09_579851 ch06.qxd 5/4/05 10:53 PM Page 95

TEAM LinG

96 CSS Hacks and Filters: Making Cascading Style Sheets Work

Browser detection is easily handled in ColdFusion—and, in some ways, more efficiently than
in either ASP or PHP. The userAgent property of the HTTP header is examined to deter-
mine the current browser. ColdFusion includes a variable that can be used for this function,
HTTP_USER_AGENT:

<cfset strUserAgent = #HTTP_USER_AGENT#>

As in the other server models, you can parse the string to see if it contains a particular value to
test for a given browser version. The findnocase() string function is useful here because it
automatically disregards case. If the specified substring is found, its position in the string is
returned (a zero means that the string was not found). Here’s how you would apply those prin-
ciples to look for Internet Explorer 6 and Netscape 4:

<cfset strUserAgent = #HTTP_USER_AGENT#>
<cfif (#findnocase(“msie 6”, strUserAgent)# GT 0)>
<cfset request.isIE6 = true>

<cfelseif (#findnocase(“mozilla/4”, strUserAgent)# GT 0)>
<cfset request.isNS4 = true>

</cfif>

What makes the ColdFusion brand of browser detection more efficient is the possible use of
the Application.cfm file. By including this code in the Application.cfm file, all the
resulting browser variables are accessible to any page in your application. To switch between
externally linked style sheets, you can address those variables directly with code like this:

<cfif request.isIE6>
<link href=”../styles/mainstyleIE6.css” type=”text/css”

<cfelseif request.isNS4 >
<link href=”../styles/mainstyleNS4.css” type=”text/css”

</cfif>

The previous routines you’ve seen in the ASP and PHP sections of this chapter for displaying
or hiding content depending on a session variable adapt well to ColdFusion. As in the other
server models, once the authorization level is set as a session variable, the dynamically gener-
ated style sheet can use the display property to show help content when appropriate. If the reg-
istered user has an authorization level of visitor, the display:block rule is applied (see
Figure 6-9); otherwise, the display:none rule is enforced (see Figure 6-10).

FIGURE 6-9: The typically hidden text is revealed when the session variable
containing the authorization level is set to visitor.

09_579851 ch06.qxd 5/4/05 10:53 PM Page 96

TEAM LinG

97Chapter 6 — Coding Server-Side Solutions

FIGURE 6-10: When users with any authorization level other than visitor hit
the page, the extra text is gone.

The external style sheet, linked as styleHelp.cfm, uses this code:

<cfcontent type=”text/css”>
h1 {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 24px;
border-bottom: 2px solid #333333;

}
.helpText {
display: none;
background-color: #FFFF00;

}
<cfif if (Session.authLevel IS “visitor”)>
.helpText { display: block; }

</cfif>

If you run into problems testing this technique, be sure you’ve cleared out the cache; I recom-
mend unchecking the Save Class Files in the Caching section of the ColdFusion Administrator.

09_579851 ch06.qxd 5/4/05 10:53 PM Page 97

TEAM LinG

09_579851 ch06.qxd 5/4/05 10:53 PM Page 98

TEAM LinG

Enhancing Graphics
and Media with CSS

When support for Cascading Style Sheets was first available in
browsers, the focus was on text. As soon as designers saw the
potential, the push for layout control began in earnest with CSS-P

(P for positioning the result). But what about one of the key elements that
makes the Internet the far more accessible World Wide Web? What about
images?

Although you may not be aware of it, there’s a quiet revolution under way at
the intersection of CSS and graphics as designers push the boundaries of
what’s possible with media without sacrificing CSS standards. A great deal
of work has been done in the controversial area of image replacement: auto-
matically substituting standard text headlines for better quality typographic
images. Other CSS-savvy designers have focused on extending the range of
graphic effects on the Web. Another area of Web graphic interest has been
more flexible integration of images into the page. Examples of all these
explorations are contained in this chapter.

Most of the techniques described herein are cutting-edge and require one or
more CSS hacks to work properly cross-browser. Some are even further out
and will only work with a limited number of browsers. Images aren’t the
only media that is benefitting from intense CSS interest. You’ll find an
extremely interesting CSS-related technique for replacing text with Flash
movies at the close of this chapter.

Styling Images for Controlled Layout
Many images are floated either directly or placed within a floated div or
other element. Floats provide a way for text to flow around an image:
float the image to the left and the text flows on the right; float to the right
and the text wraps around the left. The basic use of float with images is
the equivalent of the align attribute. However, you do have additional
control with float. You can, for example, move the floated image away
from the containing element’s edge by specifying a margin-left or
margin-right. Likewise, you can make space between a floated image

˛ Styling Images for
Controlled Layout

˛ Replacing Styles
with Images
Automatically

˛ Scaling Images for
Accessibility

˛ Making Rounded
Rectangles with CSS

˛ Adding Drop-
Shadow Styles

˛ Extending PNG
Support

˛ Implementing Flash
Replacement

chapter

in this chapter

10_579851 ch07.qxd 5/4/05 11:07 PM Page 99

TEAM LinG

100 CSS Hacks and Filters: Making Cascading Style Sheets Work

and text without adding the same amount of space to the opposite side—as was the case with
the hspace and vspace attributes.

The core problem with floating an image is the same as aligning it left or right. Regardless of
the technique used, an image is still seen as a rectangle and the text wraps around it in a block-
like fashion, as shown in Figure 7-1. Web designers look upon print designers—who can flow
text along the outline of the actual image rather follow the dimensions of the file—with a high
degree of layout envy.

FIGURE 7-1: No matter which way you float it, a standard image
retains the file’s rectangular shape.

Eric Meyer started the ball rolling with his CSS experiments involving floated sliced images
(http://meyerweb.com/eric/css/edge/curvelicious/demo.html). Although
the technique works, it’s fairly labor-intensive and a visitor on a slow connection is likely to see
many small images loading in. Jack Baer, architect of bigbaer.com, came up with a more
designer-friendly approach. Rather than slice an image into floated elements, Baer places the
image in the background of a content area along with a series of stacked floated div tags. He
refers to these as sandbag divs because of the way the text flows around them like water.

You can explore the BigBaer’s exploration of flowing text at http://www.bigbaer.com/
css_tutorials/css.image.text.wrap.tutorial.htm.

The key to using these floated divs is to also apply a clear property to each. Clearing each
div in the same direction as the float keeps the divs in a top-to-bottom stacked formation.
To simplify the CSS code, you can group all divs into one selector:

10_579851 ch07.qxd 5/4/05 11:07 PM Page 100

TEAM LinG

101Chapter 7 — Enhancing Graphics and Media with CSS

#flow01, #flow02, #flow03, #flow04, #flow05, #flow06, #flow07,
#flow08 {
float: left;
clear: left;
margin: 0 .5em 0 0;

}

A small right margin (.5em) is used to give the image a little breathing room while maintain-
ing the curving shape of the graphic. When styling each of the floated divs, all that is needed
is just a width and a height:

#flow01 {width:297px; height:36px;}
#flow02 {width:314px; height:60px;}
#flow03 {width:250px; height:21px;}
#flow04 {width:231px; height:28px;}
#flow05 {width:153px; height:76px;}
#flow06 {width:127px; height:24px;}
#flow07 {width:97px; height:26px;}
#flow08 {width:66px; height:12px;}

Because each div is cleared, there’s no reason to define positions for them, which makes the
HTML coding simplicity itself:

<div id=”content”>
<div id=”flow01”></div>
<div id=”flow02”></div>
<div id=”flow03”></div>
<div id=”flow04”></div>
<div id=”flow05”></div>
<div id=”flow06”></div>
<div id=”flow07”></div>
<!-- Start content here -->

</div>

The resulting page definitely breaks the white space barrier surrounding images, as shown in
Figure 7-2. A thin border has been added to help you see the width and height of each div.

You’ll find that you’ll need to tweak the width and height of the divs to get the optimum flow,
but you shouldn’t adjust them until you finalize the text size. It’s important to address both the
font-size and line-height of the wrapping text. A smaller font-size value coupled with a
slightly larger line-height allows for the optimum flow, as shown in Figure 7-3.

If you want to flow the text between a left-floated image and a right-floated one, you’ll need to
interweave the divs from one side with those of the other in the HTML. For example, if your
divs on the left are defined with #floatLeft and your divs on the right are #floatRight,
the opening HTML would look like this:

<div id=”flowLeft01”></div>
<div id=”flowRight01”></div>
<div id=”flowLeft02”></div>
<div id=”flowRight02”></div>
<div id=”flowLeft03”></div>
<div id=”flowRight03”></div>

10_579851 ch07.qxd 5/4/05 11:07 PM Page 101

TEAM LinG

102 CSS Hacks and Filters: Making Cascading Style Sheets Work

This practice prevents Gecko-based browsers from rendering all the divs on one side and then
all the other ones on the other side.

FIGURE 7-2: A series of stacked, empty div tags shape the flow of the
text around the image.

FIGURE 7-3: With a font-size of 11 pixels and line-height of 17, the text
just pours around the final image.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 102

TEAM LinG

103Chapter 7 — Enhancing Graphics and Media with CSS

Replacing Styles with Images Automatically
One of the biggest frustration designers have wrestled with since the beginning of the Web is
typography. Because only fonts common to their users’ systems can be used in HTML, body
text and headlines were essentially rendered in a lowest common denominator—which severely
restricts a designer’s creative options. You cannot, for example, style an h1 tag in a Magneto
font and expect all visitors to your site (who may be PC, Macintosh, or Unix users with a wide
range of operating systems) to have the font installed. The proper font is the least of a typogra-
pher’s desires. Any graphic artist working with type has the full palette of size, kerning, track-
ing, and color, not to mention other decorative flourishes.

The earliest work-around was to use a graphic for headlines. To show a headline in Magneto,
just create an image with that font and insert it as a GIF or JPEG. However, the rise of CSS
with its emphasis on separating document structure coupled with intense interest in fully
searchable pages and legislated accessibility requirements has pushed the images-as-text
method out of favor.

Dedication (or maybe it was frustration) won out, however. As early as 1999, a designer named
C. Z. Robertson described a way to use CSS to replace a heading with an image, retaining both
structural integrity and document searchability. The technique didn’t really gain notice, how-
ever, until spring of 2003 when Douglas Bowman wrote a tutorial on implementing Fahner
Image Replacement (FIR), named after Todd Fahner, who suggested the concept indepen-
dently of Robertson. FIR really took off when it was written about by Jeffrey Zeldman.

The core FIR technique is, surprisingly, very straightforward. Include a span within heading or
other block element in your HTML:

<h1 id=”fir”>Welcome!</h1>

Define a style with a background image depicting the heading set to the same height as the
image and set the span within that heading to display:none:

h1#fir {
background-image: url(“../images/welcome.gif”);
background-repeat: no-repeat;
height: 36px;

}
h1#fir span { display: none; }

The result is pretty dramatic, as shown in Figure 7-4, and must have appeared very promising
to designers committed to CSS. It became apparent, however, that the method wasn’t without
its drawbacks, especially in regard to accessibility. The majority of screen readers used by the
visually impaired would not see (and thus read) the hidden heading. Moreover, there is no alt
attribute associated with a background image to rely on.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 103

TEAM LinG

104 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 7-4: The top portion displays a standard h1 tag,
styled to 36 pixels, while the bottom portion shows the
same markup where the heading is replaced by an image.

It was a powerful concept, however, and numerous other CSS-savvy designers offered their
solution. Two, Stuart Langridge and Seamus Leahy, came up with the same basic idea at
roughly the same time. Rather than use display:none to conceal the image, their technique
focuses on reducing the height of the text to 0 and hiding the overflow. A padding-top value
is added to match the height of the replacement image. Because the text is present but not visi-
ble, it is read by screen readers. Another key benefit to this approach is that it dispenses with
the need for an additional span tag.

h1#fir {
overflow: hidden;
background-image: url(../../images/welcome.gif);
background-repeat: no-repeat;
padding-top: 36px;
height: 0px;

}

You can investigate Langridge and Leahy’s original articles at http://www.kryogenix.org/
code/browser/lir/ and http://www.moronicbajebus.com/playground/cssplay/
image-replacement/, respectively.

Although this method works pretty well across browsers, it requires a CSS hack for it to work
correctly with Internet Explorer 5.x. The Comment After Selector Hack, discussed in Chap-
ter 3, works well since you’re just modifying a single property, height:

10_579851 ch07.qxd 5/4/05 11:07 PM Page 104

TEAM LinG

105Chapter 7 — Enhancing Graphics and Media with CSS

h1#fir {
overflow: hidden;
background-image: url(../../images/welcome.gif);
background-repeat: no-repeat;
padding-top: 36px;
height: 0px !important;
height /**/:36px;

}

The !important property is added to ensure a zero value is applied by most browsers.

Dave Shea of mezzoblue.com has come up with an excellent enhancement. By adding a title
attribute to the HTML element, a tooltip appears over the graphic and screen readers are dou-
bly covered:

<h1 id=”fir” title=”Welcome to our site.”>Welcome!</h1>

You could also use a conditional comment to solve this problem. Conditional comments were
discussed in Chapter 4.

Image replacement is a powerful concept, but must be used with some caution. One possible
scenario is for users to have their images disabled. Because the CSS is still executed, visitors
will see neither graphic nor text in this situation.

Scaling Images for Accessibility
If you’ve worked on making your sites accessible, you know that font resizing is an important
item on your checklist. When testing, you probably noticed that, while your text changes sizes,
the images do not. Although it can be argued that accessibility statutes only call for text to be
resizeable, the intent of the regulation is to make all Web content on a page more visible. A
number of methods have been developed to allow your images to scale right alongside the
resizing text.

Anyone who has set up a page to resize under user control knows that the trick is to use per-
centage-based font sizes rather than fixed-size units like pixels or points. The same holds true
when setting up images to scale. Perhaps the best approach is to specify the dimensions in ems
rather than pixels. I first saw this method described on the bigbaer.com site at http://www.
bigbaer.com/css_tutorials/css.scale.image.html.tutorial.htm.

Suppose you have an image floated right that is normally 296 pixels wide by 224 pixels high.
You can roughly convert pixels to ems by using the formula 1 em = 16 pixels. The 1:16 ratio is
true for most systems, although you probably will need to tweak the values somewhat to get a
more precise match. In the following example, the image was best represented at 17 ems wide
by 12.75 ems high:

#ringImg {
width: 17em;
height: 12.75em;

10_579851 ch07.qxd 5/4/05 11:07 PM Page 105

TEAM LinG

106 CSS Hacks and Filters: Making Cascading Style Sheets Work

float: right;
padding-bottom: .5em;
padding-left: .5em;

}

I generally set up my pages with a body font-size of 62.5 percent. This has the effect of making
1 em equal to 10 points and it makes it easier for me to set sizes using ems, but thinking in
points. For example, my standard text size is 11 points, which translates quite easily into 1.1
ems. When applied to a page with an image dimensioned by ems, the graphic is reduced in size
by a little more than a third. In this example scenario, this is acceptable because I want the
image to scale with clarity, as shown in Figure 7-5.

FIGURE 7-5: With the image set to scale in ems, the top browser view shows what
happens when the text size is increased.

If you’re designing with Opera in mind, and you want to match your users’ default settings, you
should use a value of 100.01% rather than 100%. Some versions of Opera have a bug that
computes 100% to be 1 pixel smaller than it should be. In certain circumstances this can mean
that text becomes microscopic, since all subsequent font sizes are based off a base font that is
too small. Why not use 101%? Because this can cause problems in Safari.

Making Rounded Rectangles with CSS
The Web, by and large, is made up of rectangles. Each of the building blocks of a page—
images, divs, block elements—are rectangular. Given that variety is the lifeblood of most

10_579851 ch07.qxd 5/4/05 11:07 PM Page 106

TEAM LinG

107Chapter 7 — Enhancing Graphics and Media with CSS

designers, it’s no wonder that the search for the perfect rounded rectangle has been taken up by
so many.

Here’s an area where the Mozilla project bore early fruit with its proprietary CSS property -
moz-border-radius. While all other techniques rely on inserting masking images to repro-
duce a corner, the -moz-border-radius property simply draws the border with a curved
shape. In its simplest variation, the -moz-border-radius property applies the same value
to each of the border corners. For example, consider a 200-pixel-wide div, a -moz-border-
radius value of 25, specified like this:

-moz-border-radius: 25px;

This provides a nicely rounded border, as shown in Figure 7-6.

FIGURE 7-6: You can get a rounded border
without images, but only in Gecko-based
browsers for now.

By specifying two values instead of one, you can realize a differently curved shape. Consider
the following code:

-moz-border-radius: 25px 10px;

This results in a slanting rounded rectangle, as shown in Figure 7-7.

This property, while valid in all Gecko-based browsers, cannot be replicated in other browsers
currently, although there is a superset of this functionality included in the CSS3 specifications
still in progress.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 107

TEAM LinG

108 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 7-7: A slight variation is possible
by adding a second, different value.

The only other way (admittedly, a major hack) to create rounded rectangles currently is to use
images. The type of graphics used depends on the desired effect. If you just want to create a
simple rounded rectangle with a set width, you can use the image-based approach. You can find
variations of this method on the current Macromedia site and many others. This techique uses
three images: one for the top, another for the middle, and a third for the bottom of the rectan-
gle. You can see how each image is used together, as well as an exploded view in Figure 7-8.

FIGURE 7-8: Each of the three graphics is bound to particular
content in this rounded rectangle.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 108

TEAM LinG

109Chapter 7 — Enhancing Graphics and Media with CSS

Each image is embedded as a background image in the style for the content. For example, in
the top area of the rounded rectangle depicted, an h3 tag is always used, so the style is defined
like this:

#roundedBox h3{
padding: 5px 0px 2px 10px;
background-image: url(../../images/corner-head.gif);
background-repeat:no-repeat;

}

The middle section places a background image that forms the side border wherever a link is
used. This technique works well because this particular pod is intended for navigation.

#roundedBox a:link, #roundedBox a:visited, #roundedBox a:hover {
background-image: url(../../images/corner_bg_nav.jpg);
font-weight: bold;
padding: 3px 0px 3px 10px;
color: #21536A;
display: block;

}

To complete the rounded rectangle, style a class that holds the bottom image:

.cornerBottom {
background-image: url(“../../images/corner-bottom.gif”);
background-repeat:no-repeat;

}

This class will be applied to a div tag. Because this area is not expected to contain any viable
content, a non-breaking space () is needed in the div:

<div class=”cornerBottom”> </div>

For more elaborate rectangles, you’ll need to increase the number of images and adopt a differ-
ent approach to the rectangle’s structure. One method that works well across browsers relies on
the (thankfully) well-supported CSS property background-position. With background-
position, you can specify where in the background you’d like your image to display; among
the accepted values are constructs like top left, top right, bottom left, and bottom
right. Your styles then look like this:

.upRight {
background: url(../../images/topRight.png) top right no-repeat;

}
.upLeft {
background: url(../../images/topLeft.png) top left no-repeat;

}
.downRight {
background: url(../../images/bottomRight.png) bottom right no-

repeat;
}
.downLeft {
background: url(../../images/bottomLeft.png) bottom left no-

repeat;
}
.upRight, .upLeft, .downRight, .downLeft {

10_579851 ch07.qxd 5/4/05 11:07 PM Page 109

TEAM LinG

110 CSS Hacks and Filters: Making Cascading Style Sheets Work

margin: 0;
padding: 0;

}

Notice that each of the div classes also set both margin and padding to 0. Failing to do
this will cause the graphics to display in a variety of ways. To keep the text or images within
the rounded rectangle away from the border edges, apply padding—but no margin—to the
content div:

.content {
margin: 0;
padding:1em 2.5em 1.5em;

}

Typically, four over-sided images are used to keep the box size flexible. An extra-large image
works in the background because only the amount of the graphic needed to display the content
is shown. The graphics are not, as you might expect, just the four corners. To depict both an
optional background color and border, the full rectangle is sliced up and saved as separate images:

� Top right —Includes the top-right corner, along with the top and right borders and,
optionally, the body of the rectangle, as shown in Figure 7-9.

� Top left —Includes the top-left corner and the left border.

� Bottom right —Includes the bottom-right corner and the bottom border.

� Bottom left —Includes just the bottom-left corner.

FIGURE 7-9: The full top-right graphic is much larger than will actually be depicted to allow
flexible box sizes.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 110

TEAM LinG

111Chapter 7 — Enhancing Graphics and Media with CSS

Each of the divs used to hold the images is nested within one another, with the actual text
or other content in the innermost region. An outer wrapper sets the position, as well as the
dimensions of the rectangle.

The order of the divs—and thus the graphics in the background—is critical. From outermost
to innermost, the sequence is as follows:

1. Outer wrapper

2. Top Right

3. Top Left

4. Bottom Right

5. Bottom Left

6. Content

The code for the rounded rectangle depicted in Figure 7-10 shows the nested nature of the
div tags clearly:

<div id=”wrapper”>
<div class=”upRight”>
<div class=”upLeft”>
<div class=”downRight”>
<div class=”downLeft”>
<div class=”content”>
<h2>Tricked Out Box</h2>
<p>Lorem ipsum dolor sit amet, more consectetuer

adipiscing elit, sed diamnonummy nibh euismod tincidunt ut
dolore.</p>

</div>
</div>

</div>
</div>

</div>
</div>

This particular example applies the same color to the body’s background-color property as
to the rectangle to achieve a quasi-embossed look. You could just as easily use a different color
for the rectangle graphics for a completely different feel.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 111

TEAM LinG

112 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 7-10: With multiple images carefully nested in
separately defined divs, you can achieve a rounded
rectangle with numerous effects applied.

Adding Drop-Shadow Styles
The drop-shadow effect seems to be perpetually sliding in and out of designer favor. Although
a drop shadow does help an image jump off the page, it’s also been heavily used and is consid-
ered by many to be passé. Most modern graphics editors provide some method for easily
adding a drop shadow with various characteristics, but the process is labor-intensive, especially
when dealing with a gallery of images. A CSS technique makes it possible to add (and remove)
subtle drop shadows through code alone, without reprocessing the images themselves.

Although CSS includes a text-shadow property, it is only supported in Safari 1.1 and higher.

This technique, which was written about by Sergio Villarreal on A List Apart (http://www.
alistapart.com/articles/cssdrop2/) and based on earlier work by Dunstan Orchard
(1976design.com) relies on three low-weight images:

� shadow.gif—The actual drop-shadow image. This image is placed in the background of
an outer div enclosing another div, which contains the image.

� edgeShadow.png—An inverse shadow used to soften the bottom-left and top-right edges
of the shadow. This file, in PNG format, is applied to the background of a div wrapping
around the image.

� edgeShadow.gif—A second file, identical to the PNG inverse shadow file, but in GIF for-
mat to optimize the display in Internet Explorer 5.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 112

TEAM LinG

113Chapter 7 — Enhancing Graphics and Media with CSS

All three images are over-sized at 800 pixels wide by 800 pixels high. The larger size provides
more flexibility and allows the same technique (and images) to be applied to a range of images
with varying shapes and sizes. Although the dimensions of the files are quite large, the focus on
just the shadow aspect reduces the file weight considerably. All three files are just over 11 KB.
This figure becomes quite significant if the same shadow technique is applied to a gallery of
images. The files are only downloaded once and rendered multiple times.

The drop shadow applied in this example is quite subtle, as shown in Figure 7-11. You can, of
course, make the effect more pronounced by changing the graphic files.

FIGURE 7-11: The soft shadow, as well as the border,
surrounding the image is applied via CSS. Several
hacks are used to get the same effect cross-browser.

The HTML required to display this image clearly shows the multiple divs used:

<div class=”shadow”>
<div>
<img src=”../../images/starRing.jpg” alt=”The dog Star”

width=”335” height=”239” />
</div>

</div>

The outer div, shadow, includes shadow.gif as a background image based in the lower-
right corner. It also uses the Important Hack to send different margin values to Internet
Explorer on Windows. You’ll remember that most modern browsers (with the exception of
Internet Explorer on Windows) will use any declaration with the !important property in
place of a later declaration.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 113

TEAM LinG

114 CSS Hacks and Filters: Making Cascading Style Sheets Work

.shadow {
float: left;
clear: both;
background: url(“../../images/shadow.gif”) no-repeat bottom

right;
margin: 14px 0 0 17px !important;
margin: 14px 0 0 8px;

}

The inner div uses the same Important Hack to set different edge-shadow images for Internet
Explorer on Windows than other browsers because Internet Explorer does not offer PNG alpha
transparency channels (32-bit) support. The background images are positioned in the upper left
so that correct areas of the drop shadow (the top right and bottom left of the image) will be
softened.

.shadow div {
float: left;
background: url(“../../images/edgeShadow.png”) no-repeat left

top !important;
background: url(“../../images/edgeShadow.gif”) no-repeat left

top;
padding: 0px 6px 6px 0px;

}

In reality, the GIF image referenced will only be applied to Internet Explorer 5. Another
hack, enclosed in conditional comments, uses a proprietary Microsoft filter to enforce alpha
transparency:

<!--[if gte ie 5.5000]>
<style type=”text/css”>
.shadow div {

filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src=’../
../images/edgeShadow.png’,
sizingMethod=’scale’);

background: none;
padding: 0px 6px 2px 0px;

}
</style>
<![endif]-->

The hack used to display PNG alpha channels in Internet Explorer is discussed in more depth in
the following section of this chapter.

Since a conditional comment is already being used, the padding is adjusted as well to compen-
sate for Internet Explorer’s Box Model problems.

Another, more simplified, approach would be to use a single image for the shadow in PNG for-
mat. In this technique, you’d have to create the shadow the exact size needed for your images.
Although this method is more restricted in terms of the different types of images it could be used
with, it’s great for galleries of thumbnails where the images are all the same size.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 114

TEAM LinG

115Chapter 7 — Enhancing Graphics and Media with CSS

Extending PNG Support
Recently, the ability to use graphics in the PNG format completely and unabashedly on the
Web has been getting tantalizingly close to reality. The last great holdout from a browser per-
spective is Internet Explorer 6, which doesn’t provide PNG alpha channel support natively.
With this browser’s overwhelming market penetration, this lack of support has pretty much
killed widespread adoption of PNG on the Web.

Although the PNG format has many advantages over GIF (including better compression and
automatic gamma correction), its main claim to fame is variable transparency made possible by
each pixel’s alpha channel. While GIF offers only a binary type of transparency—either a pixel is
transparent or it is not—PNG allows varying degrees of transparency, up to 254 levels for use on
the Web. While this facility allows for a great deal of artistic freedom, perhaps the primary ben-
efit of PNG’s variable transparency is portability. A PNG file with alpha channel transparency
enabled can safely be inserted in a page regardless of the background, as shown in Figure 7-12,
without the ghosting shadow so noticeable if you try the same thing with GIF images.

FIGURE 7-12: The variable transparency possible in a PNG
format allows the drop shadow of the flowers to blend
seamlessly, even against a riotously colored background.

Unfortunately, if you try to look at the PNG-based file in Internet Explorer 5.5 or higher,
you’ll get a completely different and unusable result. Not only does the drop shadow appear
monotone, but the entire background is no longer transparent at all, as shown in Figure 7-13.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 115

TEAM LinG

116 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 7-13: Internet Explorer’s inability to support PNG’s
alpha channels is immediately apparent.

Microsoft has provided its own solution to the PNG problem, although somewhat “round-a-
boutly.” If you read the previous section, you’ll have noticed that the method for enabling PNG
transparency in Internet Explorer is to use a proprietary Microsoft filter, AlphaImageLoader.
Although the technique used in the “Adding Drop-Shadow Styles” section is fine for a single
image, it’s really unworkable for multiple images. Applying the AlphaImageLoader filter
requires that the PNG file to be loaded is specified each time. This process is tedious at best
and a nightmare to manage with a large site.

A solution has been developed by Erik Arvidsson of WebFX. By relying on another proprietary
Internet Explorer function, behavior, Erik was able to craft a file that automatically applies
the AlphaImageLoader filter for every PNG image found on the page. You can invoke the
behavior function in your CSS:

img {
behavior: url(“pngbehavior.htc”);

}

All browsers except Internet Explorer will ignore the proprietary behavior property. There
are two other requirements to implement this behavior: the pngbehavior.htc file (which
contains the behavior code) and a blank.gif file (a tiny transparent GIF file). Both must be
uploaded to the same folder as your page. As you can see in Figure 7-14, the extra bit of effort
is well worth it.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 116

TEAM LinG

117Chapter 7 — Enhancing Graphics and Media with CSS

FIGURE 7-14: Once the pngbehavior.htc and blank.gif file are in
place (and your CSS style is included on the page), you’ll get
the same results with PNG graphics in Internet Explorer 5.5
and higher as with other modern browsers.

You can download the necessary files to make Internet Explorer PNG-aware at the WebFX
site, http://webfx.eae.net/dhtml/pngbehavior/pngbehavior.html.

If Internet Explorer 5 is a concern for you, use conditional comments to replace the PNG image
with a GIF version for that browser.

Implementing Flash Replacement
Earlier in this chapter, you learned how an image could be substituted for a heading to achieve
a better quality of typography on the Web. The major problem with the technique described is
that each heading must have an image replacement created in advance in a graphics editor like
Adobe Photoshop or Macromedia Fireworks. How does the busy, often harried, designer set
up a page to automatically include the best quality representation of the heading text specified?
Enter Flash.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 117

TEAM LinG

118 CSS Hacks and Filters: Making Cascading Style Sheets Work

Numerous developers have worked independently and together to make Flash text replacement
a reality. Mike Davidson created a one-of-kind solution to complement his work on ESPN.com
in 2001. Two years later, Shaun Inman figured out a more general way to approach the problem
via the Document Object Model (DOM), JavaScript, and Flash Player 6 called Inman Flash
Replacement. Two other developers, Tom Werner and Rob Cameron, brought support for
multiple text lines in a heading, CSS, and accessibility. Unfortunately their technique required
Flash 7, which is not as omnipresent as the earlier version.

Again, with necessity proving the driving force, Mike Davidson returned to the project and
created Scalable Inman Flash Replacement (sIFR). sIFR is a technique that allows automatic
generation of Flash headings (in single or multiple lines), properly sized to replace your CSS-
styled text and needing only Flash Player 6. Another programmer, Tomas Jogin, helped with
making sIFR as flexible as possible and yet another, Mark Wubben, has been instrumental in
getting the latest version, 2.0 as of this writing, out the door.

As you can see by the headline in Figure 7-15, the results are very crisp and distinctive. In this
example, I was able to use one of my favorite fonts, Palatino, in the banner title. Amazingly
enough, this text can be highlighted and copied, just like standard text.

FIGURE 7-15: Each of the headlines here, including the banner, are actually
Flash elements, substituted by sIFR.

How does sIFR work? Here’s a walkthrough of the process:

1. When the requested page is loaded in the browser, a JavaScript function detects if the
proper version of Flash (6 or greater) is available. If Flash is not found, the page is ren-
dered with standard HTML text.

2. If Flash is present, the CSS class sIFR-hasFlash is assigned to the HTML tag. This
action effectively hides all the elements that are children of html. sIFR-hasFlash
that have been styled with a visibility:hidden property. These are the elements
that will be replaced with Flash.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 118

TEAM LinG

119Chapter 7 — Enhancing Graphics and Media with CSS

3. A JavaScript routine traverses the DOM and gathers all the replaceable elements. For
each element found, the space occupied (width and height) is calculated and an sIFR-
generated Flash movie is inserted in that space.

4. Starting at a large point size (96), the Flash movie systematically resizes itself until it
matches the bounding box of the given element.

Although there is a lot going on, it all happens in the blink of an eye. One of the beauties of
this method is that if users don’t have the appropriate Flash player enabled, they see standard
text. Another advantage is that any sIFR-hasFlash class selector is available to be replaced,
not just headings.

To implement sIFR in your Web pages, you’ll need to complete the following steps:

1. Download and unpack the sIFR files from http://www.mikeindustries.com/
blog/archive/2004/08/sifr. Currently, another link on that page points to the
latest version.

2. Open sifr.fla in Flash MX, Flash MX 2004, or Flash MX 2004 Professional. Double-
click the movie clip on the page to edit it. When it opens for editing, select any font you
desire from the Properties inspector.

3. Publish the SWF file containing your revised font choice to your site. I recommend
using the font name as the name of the SWF file. You can change the name in File ➪
Publish Settings.

4. In the head of your Web page, include the bundled JavaScript file, sifr.js. At
the bottom of the page, in a script tag, call the sIFR JavaScript function,
replaceElement(), as described later in this section.

5. Set up your CSS as you would normally. In addition, you’ll need to establish style rules
to change the visibility to hidden. These style rules use the sIFR-hasFlash class,
like this:

.sIFR-hasFlash h2 {
visibility: hidden;
letter-spacing: -9px;
font-size: 55px;

}

As mentioned earlier, you can specify any selector, not just heading tags.

The replaceElement() function specifies which selectors are to be replaced with which
Flash SWF file and much more. The basic function call looks like this:

if(sIFR != null && sIFR.replaceElement != null){
sIFR.replaceElement(“h1”, “palantino.swf”, “#000000”, “#000000”,

“#999999”, null, 0, 0, 0, 0, “textalign=center&offsetTop=6”);
}

10_579851 ch07.qxd 5/4/05 11:07 PM Page 119

TEAM LinG

120 CSS Hacks and Filters: Making Cascading Style Sheets Work

You can replace as many elements as desired. The replaceElement() function is only exe-
cuted if the sIFR object is found and if the proper function defined. In all, 12 arguments are
available to replaceElement():

Argument Type of Value Example

Selector String h3#pullquote

FlashSrc String palantino.swf

Color String #000000

LinkColor String #0000CC or null

HoverColor String #FF0000 or null

BgColor String #000000, transparent or null

PaddingTop Number 0

PaddingRight Number 10

PaddingBottom Number 0

PaddingLeft Number 10

FlashVars Name/Value pairs (Optional) textalign=center&offsetTop=2

Case String (Optional) upper or lower

It’s important that the padding values declared in the replaceElement() function match
any padding defined in the CSS style to ensure that the size of the Flash replacement is
precise.

Although not recommended for every situation (in many circumstances, the standard fonts
available are just what the client ordered), sIFR definitely has its place in the Web designer’s
palette.

10_579851 ch07.qxd 5/4/05 11:07 PM Page 120

TEAM LinG

Maintaining
Accessibility
with CSS

In a very real sense, accessibility is the heart of Cascading Style Sheets.
The very nature of separating content and presentation pushes designers
toward structuring Web pages with increased readability. Moreover, the

use of style sheets opens the door for the Web content to be presented in
different formats according to need. A print style sheet, for example, might
reformat the material without repetitive navigation sections.

The World Wide Web Consortium (W3C), bearer of the CSS standard,
is deeply involved in accessibility. A separate committee, called the Web
Accessibility Initiative (WAI), guides the accessibility-related recommenda-
tions for Web sites, Web-authoring tools, and browsers. Additionally, com-
bined efforts by the Cascading Style Sheets working group and the WAI
seek to find ways to achieve better accessibility through CSS. Currently, you
can find a note detailing CSS2 features in this area at http://www.w3.
org/TR/CSS-access. Unfortunately, key areas of the recommendations
have been ignored by browsers. For example, currently only one browser,
Linux’s Emacspeak, recognizes and supports aural style sheets.

All assistive devices used to make sites accessible work the same way with
regard to CSS: they depend on the browser. If the host browser does not
read a particular CSS rule, the screen reader or other device cannot translate
it. If, for example, you bolded a certain phrase in a rule that excluded
Internet Explorer 6, a screen reader working with Internet Explorer 6 would
not emphasize that phrase, whereas others would.

You want to be especially careful with your stylings in respect to
Internet Explorer. The prevalence of the Internet Explorer browser
is even higher for those using screen readers than it is for the gen-
eral population.

This correlation between what the browser and screen reader see means
that, for the most part, any CSS hack you apply for a particular browser is
transparently translated for the screen reader. There are, however, particular

˛ Setting Up for
Accessible Text

˛ Handling Print
Media Style Sheets

˛ Adding CSS Hacks
for Screen Readers

chapter

in this chapter

11_579851 ch08.qxd 5/4/05 11:06 PM Page 121

TEAM LinG

122 CSS Hacks and Filters: Making Cascading Style Sheets Work

techniques that can be used in conjunction with a CSS to help your sites work better with assistive tech-
nology such as text re-scaling and screen readers. These techniques form the basis for this chapter.

Accessibility is fast becoming integrated into everyday Web design. Consequently, a number of
accessibility-related topics have been covered elsewhere in this book. One key technique, style
sheet switching, is mentioned in Chapter 5.

Setting Up for Accessible Text
The term “visually impaired” covers a wide range of disabilities. People with the poorest vision
(or no vision at all) rely on screen readers to understand the content on the Web. Another,
much larger group, simply needs help seeing the often tiny type designers find aesthetically
pleasing. All major browsers now include mechanisms for increasing a page’s font size (as
shown in Figure 8-1), either via menu, keyboard shortcut, or both. However, a great number
of Web sites are not set up properly to take advantage of these tools.

FIGURE 8-1: Text resizing is a critical function to help those with
less-than-perfect vision. The top browser window displays the
standard font size, while the bottom shows the same page with
the font size increased.

11_579851 ch08.qxd 5/4/05 11:06 PM Page 122

TEAM LinG

123Chapter 8 — Maintaining Accessibility with CSS

This disconnect between the Web page and browser is partially because of the initial push for
pixels by Web-standard pundits like Jeffrey Zeldman. When faced with the choice of which
font-size measurement unit to use, Zeldman and others came firmly out for pixels. Pixels, like
points, are a fixed measurement unit and, thus, very appealing to designers who want to control
the complete look-and-feel of their sites. Unfortunately, pixels cannot be resized using the
browser’s built-in font scaling options across the board, most notably in Internet Explorer.
Rather, a proportional measurement system such as percent, ems, or (best of all) keywords
(large, small, smaller, and so on) must be used.

Although using ems as a base unit works, this method has a major flaw: compounding. Suppose
you want your p and td tags to look the same, so you create a style like this:

p, td {
font-size: .9em;

}

Text in a p tag outside of a table will render at .9em. However, if you place a p tag within a td
tag, the text actually renders at .81em (as .9 x .9 = .81). You can get around this by specifi-
cally defining that condition, like this:

p td {
font-size: .9em;

}

The trick to using ems as a measurement unit is to declare all possible combinations. Although
this is possible, it’s a fair amount of work.

Numerous designers have worked on the text resizing problem and documented a variety of
solutions. A notable article by Todd Fahner appeared on A List Apart (http://www.
alistapart.com/articles/sizematters/). Mark Pilgrim from Dive Into Accessibility
condensed this technique and provided valuable work-arounds for a wide range of browsers
(http://diveintoaccessibility.org/examples/fontsize.html). The following
discussion is based on his work.

Keywords arguably offer the best approach to text resizing—but there are, as psychologists and
software designers say, issues. First, Netscape 4 doesn’t really support keywords in a usable fash-
ion. The changes in each keyword size are too big to be really workable. However, Netscape 4
does adequately support text resizing with a pixel-based measurement. So, the first task is to set
the p tag to a standard medium size, 12 pixels:

p {
font-size: 12px;

}

Next, you must define styles for every browser except Netscape 4. The Comment Hack dis-
cussed in Chapter 2 is perfect for this. Declaring a more specific rule will cause all modern
browsers to override the initial p declaration:

/* Start hiding from NS4 */
/*/*/
body p {

11_579851 ch08.qxd 5/4/05 11:06 PM Page 123

TEAM LinG

124 CSS Hacks and Filters: Making Cascading Style Sheets Work

font-size: x-small;
}
/* Resume showing to NS4 */

If you’re concerned about Opera 5 for Macintosh, you’ll need to add an empty rule after the
opening part of the Comment Hack. The following code (bolded for emphasis) provides a
“toss-away” rule that then allows Opera 5 for Mac to process the next rule declared:

/* Start hiding from NS4 */
/*/*/a:{}
body p {
font-size: x-small;

}
/* Resume showing to NS4 */

Why did we pick the keyword x-small? In a perfect world, the choice would be small—
which in most browsers is the same as 12 pixels. However, in the real world, Internet Explorer 5
renders x-small as 12 pixels, not small. Therefore, the technique is to initially set the
declaration for the exception and then provide the rule, along with a hack to hide it from the
problem browser. The Tantek Hack fits the bill perfectly:

/* Start hiding from NS4 */
/*/*/a:{}
body p {
font-size: x-small;
voice-family: “\”}\””;
voice-family: inherit;
font-size: small;

}
/* Resume showing to NS4 */

The Tantek Hack (originally developed to handle Box Model problems) puts out a closing
curly bracket that, despite being escaped, is read by Internet Explorer 5. Almost all other mod-
ern browsers ignore it and apply the font-size: small declaration.

The only other browser version that had the same problem with escaped brackets as Internet
Explorer 5 is Opera 5. Because Opera 5 renders x-small as 10 pixels, if you left the problem
untreated, text would appear too small in that browser. The final hack is intended to be applied
by Opera 5 only:

/* Start hiding from NS4 */
/*/*/a:{}
body p {
font-size: x-small;
voice-family: “\”}\””;
voice-family: inherit;
font-size: small;

}
html>body p {
font-size: small;

}
/* Resume showing to NS4 */

11_579851 ch08.qxd 5/4/05 11:06 PM Page 124

TEAM LinG

125Chapter 8 — Maintaining Accessibility with CSS

All your bases are now covered and the font should appear the same across all browsers. Best of
all, it will resize the same when required.

If at all possible, run usability tests for your site, especially if there is a concern that the standard
font size is smaller than normal. You may find that the page is difficult to read for a large per-
centage of your audience.

Handling Print Media Style Sheets
Although print media style sheets are not directly mandated in the Federal Rehabilitation Act’s
Section 508 guidelines on accessibility, they certainly are in keeping with its spirit. The ability
to specify different style sheets for different media makes it a tremendous boon to granting
access to content, regardless of the device used to view it. Although establishing a print style
sheet is not as difficult as balancing a dozen or so browser variations, there are general guide-
lines to follow—and specific “gotcha’s” to avoid.

Attaching a Print Media Style Sheet
As with many other areas in a CSS, the sequence in which you declare a print media style sheet
matters. One factor that many designers tend to overlook is that a standard link or import
statement attaching your standard style sheet—if a media type is not specified—applies to all
media, including print. To override styles, the print media style sheet must be attached after the
main style sheet, like this:

<style type=”text/css”>
@import “main.css”;

</style>

<link rel=”stylesheet” type=”text/css” media=”print”
href=”mainprint.css” />

Some designers work around this issue by specifying media styles for all declared style sheets,
(for example, media=”screen, handheld, projection”). This works as well, but may be
an unnecessary step if you’re redesigning an existing step to include a print media style sheet.

As when working with different style sheets for different browsers, it’s important to restyle the
same selectors in your print style sheet as in your overall style sheet. You wouldn’t, for example,
want to just change the color attribute of the body tag to black in the print style sheet
when the basic style sheet includes a style #sidebar p that sets background-color to
black and color to white.

11_579851 ch08.qxd 5/4/05 11:06 PM Page 125

TEAM LinG

126 CSS Hacks and Filters: Making Cascading Style Sheets Work

Defining General Properties
Obviously, the overall presentation in print is quite different from the screen. To take advantage
of the benefits in print, you typically want to make sure three basic components are addressed:
margins, color, and font size.

Although many designers zero out their margins for a Web page viewed on a monitor, printers
need margins. Unless you’re attempting a fancy layout for print, the cleanest way to present
your text is to set the width to auto and margin to a value around 10% to 15%. By avoiding
using a set pixel size for the margins, your print output remains more flexible. Standard U.S.
letter size paper will look just as good as A4 sizes found elsewhere.

Printer paper is typically white, so defining the general background color to white and the
text color to black results in the sharpest contrast:

body {
background-color: white;
color: black;

}

You’ll probably also want to remove any background images for the best reproduction, as
shown in Figure 8-2.

FIGURE 8-2: By selectively removing unnecessary elements such as
navigation, you are one step closer to prepping your page for print.

To ensure that the white background of the page is displayed, use the transparent property.
Soppose that the .sidebar class typically has a graphic as well as a differentiating color. The
print style sheet neutralizes both like this:

.sidebar {
background-image: none;
background-color: transparent;

}

Clients and designers alike tend to go a little smaller with font sizes on screen. I generally set
my overall font-size to 12 points. Although points as a measurement unit are not well
suited for the Web, they’re perfect for print.

11_579851 ch08.qxd 5/4/05 11:06 PM Page 126

TEAM LinG

127Chapter 8 — Maintaining Accessibility with CSS

Correcting Print-Specific Problems
Certain Web page elements are meant only for the Web, while others malfunction when sent
to print. Most designers feel that menu navigation has no real use in a print version of a page.
To hide the navigation (or anything else) use the display: hidden declaration. For exam-
ple, assume your navigation is contained within a div with the ID of #navbar. To keep the
navigation buttons from printing, your print style sheet would include a style rule like this:

#navbar { display: none; }

If you think ahead, you can also print content that is not displayed on the Web page. Some com-
panies want to include copyright or legal notices on every printed page. The content must be
included in your Web code with display: none defined for the general style sheet and dis-
play: block declared in the print media style sheet.

Gecko-based browsers have a potentially destructive problem with floats. In recent versions of
Mozilla, Netscape, and Firefox, if a floated container spans a page break when printed, some or
all of the content after the page break vanishes. The issue seems to be related to the float prop-
erty. Another reported issue occurs when the top of a floated element coincides with a page
break. In Internet Explorer, the floated element doesn’t print at all. To resolve these problems,
declare float: none for the appropriate styles.

Designing a print style sheet requires a fair degree of experimentation. You may find that, in
addition to declaring float: none, you also need to adjust the left margin of an adjacent ele-
ment to zero.

Links present a particular challenge when making the jump to print. Typically, a link within a
paragraph is assigned to a related word, but not the entire link itself. It’s not too often these
days that you literally see Visit http://MyDolphinsHome.com/index.html. It’s far
more common to use something like Visit My Dolphin’s Home and the link is assigned to
the text. Advanced capabilities of CSS2 and the still under-proposal CSS3 provide the power
to print the href value following the link.

The first task is to style the link so that it displays the same whether or not it has been previ-
ously clicked:

a:link, a:visited {
background: transparent;
color: black;
text-decoration: underline;

}

To display an actual URL following the selected link, you must use the :after pseudo-ele-
ment to generate the content. One of the properties of the :after pseudo-element is the abil-
ity to render the value of any attribute listed. The following code puts the href value of the
link in parentheses:

a:link:after, a:visited:after {
content: “ (“ attr(href) “) “;
}

11_579851 ch08.qxd 5/4/05 11:06 PM Page 127

TEAM LinG

128 CSS Hacks and Filters: Making Cascading Style Sheets Work

The additional spacing around the parentheses ensures that the URL won’t be placed directly
after the link text. When applied to our example, the output would look like this:

Visit My Dolphin’s Home (http://MyDolphinsHome.com/index.html).

Not all links, of course, are fully formed. Many links internal to a site use document-relative
(such as ../../docs/policies.htm) or site-root-relative (/docs/policies.htm)
links. When site-root-relative links are found, you can create a fully formed link by prepending
the name of the site. A CSS3 attribute selector targets the first letter of an attribute’s value and,
if there’s a match, can be used to generate content. If the site uses site-root-relative links, add
this style to your print media style sheet, substituting the name of your site:

a[href^=”/”]:after {
content: “ (http://www.yourSite.com” attr(href) “) “;
}

Currently, this proposed CSS3 attribute selector is supported by Gecko-based browsers,
Opera 7, and Safari.

Unfortunately, there’s nothing similar that can be done to provide a complete link for
document-relative links.

Adding CSS Hacks for Screen Readers
Listening to your Web page be read by a screen reader is an eye-opening exercise that every
Web designer should undertake. It’s especially beneficial if you happen to experience it in the
company of someone who actually uses such an assistive device regularly. The speed at which
someone accustomed to screen readers navigates the page is astonishing—and so is the frustra-
tion when a non-accessible page is encountered.

Navigation can be a real sore point for people relying on screen readers. Typically, site naviga-
tion is positioned near the top of the code, as well as the page. As one of the first elements
encountered, a screen reader reacts to a standard navigation bar by saying something like the
following:

Link Home
Link Products
Link Services
Link Contact Us
Link About Us

If you’ve never encountered a screen reader, you can see them in action at the University of
Wisconsin–Madison’s site. As part of a vast amount of accessibility research, the University pro-
duced a number of videos that demonstrate how screen readers are used and offer insightful
advice for Web designers on accessibility. You can find the videos at http://www.
doit.wisc.edu/accessibility/video/. If you want to experience it for yourself, down-
load a trial version. JAWS for Windows offers a 40-minute trial version at http://www.
freedomscientific.com/fs_downloads/jaws.asp, and you can get a 30-day trial ver-
sion of IBM HomePage Reader from this page, http://www-306.ibm.com/able/
solution_offerings/hpr.html.

11_579851 ch08.qxd 5/4/05 11:06 PM Page 128

TEAM LinG

129Chapter 8 — Maintaining Accessibility with CSS

Although links are important to navigating a site for any visitor, the initial recital of links can be
a hindrance to the screen-reader user, especially on repeated visits. To make it easy for screen-
reader users to get to the content, a special link is placed at the top of the page that connects to a
named anchor at the top of the actual content. This special link is referred to as a skip link and
typically uses this code:

Skip Links

Many designers find such a link, even if it is styled discreetly, to be a visual blot on the page.
For quite some time, the typical solution was to establish a style rule that used the display:
none declaration to hide the links. Accessibility experts such as Joe Clark feel that concealing
the skip link is counterproductive, because it is useful to many different people, not just the
visually impaired. Another accessibility and CSS guru, Bob Easton, has discovered (with the
help of others) that screen readers (such as CSS-compliant browsers) also cannot see content
hidden with display: none declarations. When you realize that screen readers are only
intepreting what the browser sees, this makes perfect sense. The condition with display:
none is currently the case with the top three screen readers: JAWS, Window Eyes, and IBM
Home Page Reader.

You should, however, think twice before you move to hide the skip link form your page. Some
people (such as the elderly who may not be facile with keyboard navigation or others with
physical impairments who may be using a device other than a mouse) rely on them to quickly
get to the content of a page.

You can review Bob Easton’s research at http://css-discuss.incutio.com/?page=
ScreenreaderVisibility.

Luckily, another solution has emerged and tested successfully. Instead of using CSS to not ren-
der the skip link, you can create a CSS rule that displays the skip link off the visual screen. The
standard way of doing this is to style a rule that puts the content off the left edge of the screen,
like this:

.off-left {
position: absolute;
left: -999px;
width: 990px;

}

Once declared, the same class can be used for any amount of accessibility-related text you want
to convey to the screen-reader user, but not to the visitor experiencing the Web page visually. In
addition to a skip-to-content link, you might also include a skip-to-navigation and/or skip-to-
search link.

11_579851 ch08.qxd 5/4/05 11:06 PM Page 129

TEAM LinG

11_579851 ch08.qxd 5/4/05 11:06 PM Page 130

TEAM LinG

Integrated CSS Hack
Layouts

Layouts are perhaps the most frustrating CSS techniques to master. Just
when you think you’ve got everything working correctly, one small
modification to the page can bring massive unwanted changes. Much

of the blame for the fragility of modern CSS layouts should be attributed to
browser implementations. For example, suppose you want a particular ele-
ment to always be 10 pixels above the bottom of its container and so you
position your element with the value of bottom: 10px. This is fine for
every modern browser, except Internet Explorer—which would place the
element 10 pixels above the bottom of the browser window.

The goal of this chapter is to provide you with a series of working CSS lay-
outs that you can adapt and use for your own work. The initial sections of
the chapter dive into the specific building blocks of CSS layout: positioning
and floats. Both CSS concepts require special attention—and a variety of
CSS hacks, both previously discussed and newly uncovered—for their use to
be brought into reality on the Web. The balance of the chapter is devoted to
the core challenges facing a CSS layout designer: two- and three-column
pages, a well-behaved footer, and consistently centered content. Each layout
will incorporate CSS hacks as needed to get the job done.

Positioning with CSS
The positioning functions defined by CSS2 gave Web designers tremen-
dous control over their page layouts—and a really big headache. The rules
governing the position property appear complex and difficult to master.
However, once you understand a few key concepts, you’ll be able to re-cre-
ate the most sophisticated table-based layout without convoluted table code.
Then you’ll be ready to make any needed adjustments to compensate for
browser inconsistencies.

Perhaps the most common misunderstood aspects of the position prop-
erty are the accepted values: static, relative, absolute, and fixed.
The first value, static, is the default position value for all elements. If you
remove all positioning from a document, the layout of the page will look

˛ Positioning with
CSS

˛ Managing the Float

˛ Crafting Two- and
Three-Column
Designs

˛ Placing Footers
Correctly

˛ Centering Page
Layouts

chapter

in this chapter

12_579851 ch09.qxd 5/4/05 10:48 PM Page 131

TEAM LinG

132 CSS Hacks and Filters: Making Cascading Style Sheets Work

exactly the same as if you had assigned position: static across the board. This static rep-
resentation is known as the normal document flow. Each of the other three values can poten-
tially adjust an element’s place within the flow. In other (more practical) words, you only have
to be concerned with three values.

Position: Relative
Another major positioning concept is the containing block. When you specify an offset value
(such as left: 10px or top: 20px) for a relative-, absolute-, or fixed-positioned element,
the offset is in relation to the containing block. The primary difference between the three val-
ues is that the containing block is different for each one.

The containing block for a position: relative element is the element itself where it
would normally appear in the document flow. For example, consider specifying a style like this:

#content {
position: relative;
left: 10px;
top: 10px;

}

Here, you’re moving the #content element 10 pixels down and 10 pixels to the right from its
current position, as illustrated in Figure 9-1.

FIGURE 9-1: The dotted outline represents the
element’s original position in the document flow;
the solid rectangle shows the new position after
the offset values have been applied.

What uses does a position: relative declaration have? One example is to offset a
pull-quote box without allowing the text wrapping that goes with using a float. This has the
added advantage of changing position properly if the text size is increased or decreased. A
position: relative element retains its place in the flow, whether it is offset or not.

12_579851 ch09.qxd 5/4/05 10:48 PM Page 132

TEAM LinG

133Chapter 9 — Integrated CSS Hack Layouts

As far as browser support is concerned, position: relative works correctly in all fifth-
generation browsers, including all Gecko-based browsers and Internet Explorer 5 and up. The
declaration is not recognized by Netscape 4.

The position: relative declaration does bring one major advantage to the table,
however. Its use corrects many problems in Internet Explorer 6. Theoretically, delaring
position: relative without specifying any offsets should have no effect on the page
rendering. You are, in essence, defining the style to remain in place in the flow. For some
unknown reason, applying a position: relative declaration to a troublesome selector
fixes the problem in Internet Explorer 6 without breaking it anywhere else—the perfect defini-
tion of a CSS hack!

To see this effect in action, take a page that has three divs: an outer one with a background
color, an inner one that contains floated items, and a clearer div. Here’s what the CSS would
look like:

#main {
background-color: #99FFFF;

}
#container {
border: 1px dashed red;

}
.item {
float: left;
background-color: #000000;
padding: 3px;
margin: 5px;

}
#spacer {
clear: both;

}

Any text in the outer div, #main, disappears when Internet Explorer 6 first loads the page, as
shown in Figure 9-2. If you refresh the page by scrolling, resizing the browser window, or going
to another application and then returning to Internet Explorer, the text suddenly appears.
Pretty strange, right?

How do you serve the page as intended, cross-browser? Add a position: relative decla-
ration to your content selectors. For example, if your heading is in an h1 tag, you could add this
CSS rule:

#main h1 { position: relative }

Suddenly, your title is present, first time, every time (see Figure 9-3).

As with any miracle cure, you must also administer a grain of salt when applying position:
relative. Be sure to test your pages thoroughly to make sure what is fixed in Internet Explorer
is not broken somewhere else. Internet Explorer 5 for Mac is particularly sensitive to position:
relative issues.

12_579851 ch09.qxd 5/4/05 10:48 PM Page 133

TEAM LinG

134 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 9-2: It’s what you don’t see—the text above the three zodiac
signs—that’s important in Internet Explorer 6.

FIGURE 9-3: Applying position: relative to the text makes it appear
in Internet Explorer 6, without any ill effects in other browsers.

Beyond serving as a general cure-all for Internet Explorer 6 display woes, the real power of the
position: relative declaration is apparent when it is used in conjunction with another
positioned element, typically one that has been absolutely positioned.

12_579851 ch09.qxd 5/4/05 10:48 PM Page 134

TEAM LinG

135Chapter 9 — Integrated CSS Hack Layouts

Position: Absolute
When designers are first introduced to the concept of absolute positioning, they’re generally
ecstatic. Finally, here’s a way you can create pages the way you want to, just like pasting cutout
boxes on a layout. The bad news is that it’s not that easy. The good news is, once you under-
stand the two ways in which position: absolute can be used, you’ll have more control
than you ever considered.

Once again, the key to understanding this positioning property is the containing block. For
position: absolute, the containing block is the nearest ancestor element with a posi-
tion: absolute, position: relative, or position: fixed property. If no such ele-
ment exists, the containing block is considered to be the document’s root element, the html
tag. This latter case is the one most designers are familiar with. Suppose a designer applies a
style like this to a div tag:

#sidebar {
position: absolute;
left: 20px;
top: 90px;
width: 125px;
height: auto;

}

The expectation is for a box to appear 20 pixels from the left edge of the document window
and 90 pixels from the top. The box is absolutely positioned with respect to the document
window—when the page scrolls the box scrolls with it, as shown in Figure 9-4.

FIGURE 9-4: The events listing sidebar is absolutely positioned
and uses the html tag as its containing block.

However, the Web isn’t a static medium like print, where each page is printed one way and one
way only. Many factors could cause elements to shift size or position. Assume, for example, that
a visitor to the page had a slightly higher font-size setting. If the navigation text is set to be
resizable, soon your absolutely positioned box is absolutely in the way, as shown in Figure 9-5.

12_579851 ch09.qxd 5/4/05 10:48 PM Page 135

TEAM LinG

136 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 9-5: When an absolutely positioned object is tied to
the html tag, undesired overlaps are entirely possible.

By taking advantage of the containing block definition, you can have the best of both worlds.
Rather than relying on the html tag to be the containing block, in many cases it’s best to
define another style with a position: relative declaration to wrap around the absolutely
positioned div. You’ll need to adjust the left and top properties within the absolutely posi-
tioned style, however. Because the container div is in the flow of the document, chances are
your left will be much less, if not zero. To ensure that the absolutely positioned element flows
downward when necessary, you’ll also need to set the top property to auto. The relevant por-
tion of the style sheet now looks like this:

#container {
position: relative;

}
#sidebar {

position: absolute;
height: auto;
width: 125px;
left: 0px;
top: auto;
border: 1px solid #006699;

}

If you want to add some consistent space between the relatively positioned container and the
absolutely positioned element, apply a margin-top value to the absolutely positioned style.

Now, even if the text size is increased significantly, the absolutely positioned element stays right
where you want it, correctly placed in the flow of the document, as shown in Figure 9-6.

12_579851 ch09.qxd 5/4/05 10:48 PM Page 136

TEAM LinG

137Chapter 9 — Integrated CSS Hack Layouts

FIGURE 9-6: To maintain both positioning and flexibility, wrap
your absolutely positioned styles with a position: relative style.

Several ways exist to size an absolutely positioned element, but you have to use caution if you
decide not to go with the width property. An alternative approach is to use the left and
right properties. For example, if your outer container has a width of 400 pixels, setting the
left property to 10% pixels and the right to 20% would create a box 280 pixels wide (assum-
ing all margins, padding, and borders are at zero). Although this might seem like a method for
keeping your absolutely positioned box a constant size, it’s problematic in both Opera and
Internet Explorer. Both of these browsers tend to reduce the size of a box defined in this way to
fit the content—a process referred to as shrink-wrapping. A better method to maintain a con-
sistent ratio between an inner box and a container of variable size is to set the inner box style to
a percentage width, like this:

#sidebar {
position: absolute;
height: auto;
width: 80%;
left: 0px;
top: auto;
border: 1px solid #006699;

}

All browsers display styles with a percentage width at their full width regardless of the amount
of content.

Internet Explorer 5 for Mac has a particular problem handling the right property in absolutely
positioned styles, often leaving unwanted gaps and generating unnecessary horizontal scroll
bars. If Internet Explorer 5 for Mac is a targeted browser, you’re better off defining your width
through another method.

12_579851 ch09.qxd 5/4/05 10:48 PM Page 137

TEAM LinG

138 CSS Hacks and Filters: Making Cascading Style Sheets Work

Position: Fixed
The position: fixed declaration is exactly like position: absolute with one differ-
ence: the containing block. Whereas position: absolute can use either the html tag or
another ancestor element as its containing block, position: fixed only has one option—
the browser screen or viewport. When the HTML document scrolls within the viewport, any
element that has been fixed in position stays in place. This facility gives position: fixed
frame-like behavior without the drawbacks of frames.

The viewport changes according to the medium in use. With a monitor and browser, the view-
port is the browser screen. When printing, the viewport is each page printed.

Sounds too good to be true? It is—Internet Explorer 5 or greater on Windows, the world’s
most used browser, doesn’t support the fixed attribute. However, there is a way to trick
Internet Explorer into scrolling only part of the screen. In fact, with the aid of conditional
comments, you can use the position: fixed declaration successfully on most modern
browsers, in either quirks or standards mode.

The first task is to set up your page properly. Each region to be fixed (as well as the scrolling
content) should be in its own region, typically separated with a div tag. The example used in
this section has two fixed sections: a header and a sidebar. Abstracted, the HTML for the page
shown in Figure 9-7 looks like this:

<div id=”header”>
[Header image and navigation goes here]
</div>
<div id=”sidebar”>
[Sidebar content goes here]
</div>
<div id=”content”>
[Main content goes here]
</div>

In the CSS declaration for the body tag, use padding (not margins) to position the scrollable
content correctly. Because the example fixes both a header and a left sidebar, the content is
placed down and to the right:

body {
padding: 100px 0 0 160px;
margin: 0;

}

As part of the work-around to get the concept to work across browsers, the two fixed areas are
initially positioned absolutely:

#header {
position: absolute;
top: 0px;

12_579851 ch09.qxd 5/4/05 10:48 PM Page 138

TEAM LinG

139Chapter 9 — Integrated CSS Hack Layouts

left: 20px;
height: 100px;

}
#sidebar {

position: absolute;
top: 105px;
left: 20px;
height: auto;
width: 125px;

}

FIGURE 9-7: You’d never know it from first glance, but both the header
and sidebar are fixed in position.

Using the Child Selector Hack, which excludes Internet Explorer on Windows, the two styles
are now fixed in place:

html>body div#header { position: fixed; }
html>body div#sidebar { position: fixed; }

At this stage, the page will render as expected in all Gecko-based browsers, Opera, Internet
Explorer 5 for Mac, and Safari (see Figure 9-8).

12_579851 ch09.qxd 5/4/05 10:48 PM Page 139

TEAM LinG

140 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 9-8: Both fixed areas stay in place while the content scrolls.

To get it to work on Internet Explorer on Windows, you’ll need to supply two different hacks,
one for Internet Explorer 5 and another for Internet Explorer 6 and above. The styles used set up
the content area to scroll, if all of it cannot be shown on the screen at once (a condition known as
overflow), while hiding the overflow from the main document element. For Internet Explorer 5,
the main document element is considered to be the body tag; for Internet Explorer 6, it’s the
html tag:

<!--[if IE 5]>
<style type=”text/css”>
body {

overflow: hidden;
}
div#content {

height: 100%;
overflow: auto;

}
</style>
<![endif]-->

<!--[if gte IE 6]>
<style type=”text/css”>
html {

overflow: hidden;
}
body {

height: 100%;

12_579851 ch09.qxd 5/4/05 10:48 PM Page 140

TEAM LinG

141Chapter 9 — Integrated CSS Hack Layouts

overflow-y: auto;
}
</style>
<![endif]-->

The two-conditional-statement technique allows designers to create pages in standards mode,
as shown in Figure 9-9.

FIGURE 9-9: Even Internet Explorer can be made to display fixed
elements properly with a little CSS hackery.

If your page is in quirks mode, you only need one conditional comment to affect all Internet
Explorer versions:

<!--[if IE]>
<style type=”text/css”>
body {

overflow: hidden;
}
div#content {

height: 100%;
overflow: auto;

}
</style>
<![endif]-->

Much of the technique discussed in this section is culled from the work by Anne van Kesteren, a
designer in the Netherlands. He has numerous examples posted on his site at http://
annevankesteren.nl/archives/2004/07/fixed-positioning.

12_579851 ch09.qxd 5/4/05 10:48 PM Page 141

TEAM LinG

142 CSS Hacks and Filters: Making Cascading Style Sheets Work

Managing the Float
The float property is one of the most powerful in CSS, so it only makes sense that it is also
one of the most problematic. Any element styled with a float value of left or right is moved to
one side of its parent element, allowing the content of the parent to flow around it. In its sim-
plest form, the float property mimics that of align when applied to images—but float is
much more powerful. Many layout designs rely on the float property as a key element.

It will come as no surprise to hear that most of the problems with the float property stem
from Internet Explorer on Windows. While the bugs are many, common solutions appear to
solve a great deal of them. When you encounter an issue with floats, try these fixes first:

� If possible, always define a width or height dimension for the parent element containing
a float. This is particularly important when the float touches a clearing element. The
Holly Hack (which gives the parent of a floated element a height of 1%) resolves this
problem for Internet Explorer on Windows; Internet Explorer 5 for Mac floats require
an explicit width. The Holly Hack is detailed in Chapter 3.

� Although it is not always possible, you can avoid numerous issues when floating text ele-
ments by assigning a width to the element style.

� Conversely, avoiding widths on elements following floats also prevents display problems.

� If you’re using negative margins on a float to create an effect such as the cut-out drop-
cap in Figure 9-10, you might see a slight clipping of the text in Internet Explorer. To
work around this issue, add position-relative to the floated style.

� To put space between floated text and the wrapping text, apply increased margin values
to the float rather than on the text following the float. Unfortunately, Internet Explorer
on Windows doubles the outside margin for floats. For example, if you use a float:
left with a margin-left of 3 pixels, Internet Explorer renders that as 6 pixels. You
can defeat the doubling up by adding a display: inline declaration to the float.

FIGURE 9-10: Floats can be positioned with negative margins to create
cut-out effects—but you may run into problems with Internet Explorer.

12_579851 ch09.qxd 5/4/05 10:48 PM Page 142

TEAM LinG

143Chapter 9 — Integrated CSS Hack Layouts

A number of browser bugs appear when you attempt to clear a float. When a floated image or
other element is placed before one or more paragraphs of text, the standard behavior is for the
text to flow to the right or left of the floated element. If there is enough text, the words con-
tinue to wrap all the way around the image and then expand to the full width of the containing
element. If you want to ensure that the next text or content does not wrap around the float, add
a clear property to the style, like this: clear: both. The use of the clear property allows
you to wrap some, but not all, content, as shown in Figure 9-11.

FIGURE 9-11: With the clear property applied, the quote will always
display below the floated image.

It’s important to understand what the clear property does, because it’s handled differently in
all modern browsers and Internet Explorer. When you apply a clear declaration to an ele-
ment, the browser increases the top margin as much as necessary to push the cleared element
below the floated element. When the cleared element is pushed down, it brings the surround-
ing container (if any) down with it. The problem emerges when you take the cleared element
away—and Internet Explorer acts as if it is still there, as shown in Figure 9-12.

Naturally, this behavior could be standardized across browsers by simply adding a clearing ele-
ment. However, one of the goals of good CSS practice is not to add unnecessary markup just
for the sake of a fix. In addition to being inelegant, additional markup is a chore to manage and
maintain. The ideal solution to this dilemma is to automatically add a clearing element that
doesn’t impact the page in any unwanted way.

12_579851 ch09.qxd 5/4/05 10:49 PM Page 143

TEAM LinG

144 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 9-12: Even without a clearing element, Internet Explorer expands the container
to enclose the float.

Designers John Gallant and Holly Bergevin have documented an excellent way to clear a float
without additional markup. The key is the :after pseudo-element, which is used to generate
a tiny bit of hidden content (a single period) that includes a clear: both declaration. The
:after pseudo-element is used in conjunction with a defined class so that the style can be
used as needed on a page. You’ll need to make sure the class also has display: block
declared as the default because display: inline does not work with the clear property.

.clearItem:after {
content: “.”;
clear: both;
height: 0;
visibility: hidden;
display: block;

}

The class is applied to the container element. Once both the CSS and the assigned class are in
place, the container will expand around the float in all browsers, even ones like Firefox that fol-
low the specifications closely (see Figure 9-13).

While this is a dramatic improvement over the previous solution of inserting a div tag with a
clear property defined, there are a few complications. If your containing element does not
include a width or height, Internet Explorer will not automatically wrap around the float.
Moreover, Internet Explorer does not recognize the :after pseudo-element. A great way to
handle this is with a variation on the Holly Hack (discussed in Chapter 3) applied to the previ-
ously styled clear class:

/* Start Commented Backslash Hack */
* html .clearItem, * html .clearItem * {height: 1%;}
/* Close Commented Backslash Hack */

12_579851 ch09.qxd 5/4/05 10:49 PM Page 144

TEAM LinG

145Chapter 9 — Integrated CSS Hack Layouts

FIGURE 9-13: With CSS inserting and then hiding
generated content with a clear: both property, no
additional clearing element markup is required to
get the desired effect.

You’ll remember that the Commented Backslash Hack (discussed in Chapter 3) is used to hide
the style rule from Internet Explorer 5 for Mac. The bolded second selector in the Holly Hack
ensures that any element within the container with the float also has the height: 1% declara-
tion applied. This clears up any difficulties Internet Explorer has displaying the hover state of
links without affecting any other aspect of the area.

One final hack is needed to bring Internet Explorer 5 for Mac into the fold. As with many other
CSS displays, Internet Explorer 5 for Mac properly handles containers without floats, so it will
not automatically enclose the float like Internet Explorer on Windows will. Unfortunately, it
also does not understand the :after pseudo-element. To get the Mac browser to enclose the
floated element, you’ll need to add a display: inline to the clearing class—and then you’ll
need to reset it once again for the rest of the browsers. Luckily, part of the Holly Hack has the
Mac filtering mechanism already built-in. Your relevant CSS will ultimately look like this:

.clearItem:after {
content: “.”;
clear: both;
height: 0;
visibility: hidden;
display: block;

}

12_579851 ch09.qxd 5/4/05 10:49 PM Page 145

TEAM LinG

146 CSS Hacks and Filters: Making Cascading Style Sheets Work

.clearItem { display: inline; }

/* Start Commented Backslash Hack */
* html .clearItem, * html .clearItem * {height: 1%;}
.clearItem { display: block; }
/* Close Commented Backslash Hack */

Crafting Two- and Three-Column Designs
The primary CSS-related goal of designers these days is to completely replace table-based lay-
out. Though tables still have their place within the layout, using them to structure the page is
not one of them. Layouts, although widely varied in their final look, are largely based on a few
core designs: two columns (with the main content area on the left or right) or three columns
(with the main content in the middle). Often, these pages have a header that spans all columns.

In this section, you’ll bring together what you’ve learned in this and earlier chapters to create
basic layouts that look the same in all modern browsers and, if desired, as good as possible in
Netscape 4.

Two-Column Layouts
Two-column layouts are very popular because they give prominence to two separate sections,
while breaking up the page for greater visual interest. Often, designers use one column for nav-
igation and another for their primary content; each column can, in turn, include other page ele-
ments for a varied look.

One of the two columns is almost always significantly smaller than the other. Two-column lay-
outs equal in width are rare. Designers are equally split between placing the smaller of the two
columns on either side. It’s good to know how to do both to vary your sites. You’ll also want to
be able to create fixed-width layouts as well as layouts that expand or contract with the browser
window. A layout that adjusts to the browser window size is said to be liquid or fluid. Once you
have a basic structure and styles created, it’s fairly easy to switch between fixed-width and fluid
layouts.

Project Seven (http://www.projectseven.com) has been and continues to be a tremen-
dous resource for CSS, especially for those designers using Dreamweaver. Much of the discussion
in this section is based on their research.

Fixed Width, Main Content on Left
Let’s start with a fixed-width, two-column design. The example page includes a header, a main
content column on the left, and a sidebar column on the right. You’ll need to create styles for
each of the primary elements: #header, #mainColumn, and #sideColumn. To be able to
position the side-by-side columns together, you’ll also need a #wrapper style. All of these
styles are applied to div tags to form the primary divisions of the page. Figure 9-14 shows the
completed version.

12_579851 ch09.qxd 5/4/05 10:49 PM Page 146

TEAM LinG

147Chapter 9 — Integrated CSS Hack Layouts

FIGURE 9-14: A wrapper helps to keep the columns centered.

In this design, the page’s background color (as applied to the body tag) serves as the back-
ground for the content and sidebar. By using the page’s background color for the columns, you
don’t have to worry about one column being shorter than the other—the color will always be
consistent. The header is given another background color to differentiate it from the columns
and it also includes a logo and some navigation. The header height matches that of the logo
image, while the width is omitted and will be automatically adjusted to fill the page. To avoid a
portion of the header’s background color disappearing should the browser window be reduced
to require a horizontal scroll bar, a minimum width is defined. You want to keep the header the
true width of the wrapper, which you can calculate by adding its width plus the left and right
padding (720 + 10 + 10 = 740 pixels). The header style looks like this:

#header {
height: 110px;
background-color: #FFFFFF;
min-width: 740px;

}

The min-width property is not supported by Internet Explorer on Windows, so you’ll need
to take two actions to work around this problem. First, wrap the logo in the header in an h1
tag (you could use any block-level element). Second, in a conditional comment, set the width
of the #header h1 selector to the same value as the minimum width:

<!--[if IE]>
<style type=”text/css”>
#header h1 { width: 740px }

</style>
<![endif]-->

This page will require a number of CSS hacks for Internet Explorer. Ultimately, all of these
could be put into an external style sheet and then linked to the page from within a conditional
comment.

12_579851 ch09.qxd 5/4/05 10:49 PM Page 147

TEAM LinG

148 CSS Hacks and Filters: Making Cascading Style Sheets Work

The #wrapper div that is placed around the two columns is given a fixed width and centered
by setting the left and right margins to auto. A little bit of padding moves the content in
equally on both sides:

#wrapper {
width: 720px;
margin: 0 auto;
padding: 0 10px;

}

Internet Explorer 5 does not recognize the margin: 0 auto technique for centering page ele-
ments, so you’ll have to add two rules to a conditional comment. The first centers all elements
via the body tag with the text-align property and the second resets individual elements so
that the element is centered, but the text is left-aligned:

<!--[if IE 5]>
<style type=”text/css”>
#body { text-align: center }
#header, #sideColumn, #mainColumn {
text-align: left;

}
</style>
<![endif]-->

Both of the columns are positioned using the float: right declaration and define pixel
widths. By floating both elements, browsers render them tightly next to each other and
padding is used to set the desired separation. For a page in which the sidebar is on the right,
it comes first in the HTML (so it will appear furthest right) and it is padded on its left.

#sideColumn {
float: right;
width: 160px;
padding: 0 0 0 15px;
font-size: .9em;

}

The main content, which is displayed on the left, defines a similar padding on its opposite side
to keep separation from the other column.

#mainColumn {
float: right;
width: 520px;
margin: 0;
padding: 0 15px 15px 0;
border-right: 2px solid #fff;
font-size: 1em;

}

A border is added on the right of the main column to delineate the two columns.

Folowing is a summary of this technique to highlight the key aspects for creating the fixed-
width two-column layout in which the main column appears on the left side:

� Wrapper—Set at a specific pixel width equal to the true width of both columns, which
includes their stated width, padding, and borders (if any). Centered using the margin
auto method.

12_579851 ch09.qxd 5/4/05 10:49 PM Page 148

TEAM LinG

149Chapter 9 — Integrated CSS Hack Layouts

� Main column—Set at a specific pixel width, floated right, padded on the right, and uses a
right border.

� Sidebar column—Also set at a specific pixel width and floated right. However, the padding
appears on the left and no border is specified. The div containing the sidebar column
must appear before the main column div in the HTML code.

Fixed Width, Main Content on Right
With the fixed-width page created, it’s actually quite easy to manipulate the CSS to reverse
the order of the columns. The #header and #wrapper styles stay the same, and only the
#mainColumn and #sideColumn styles need to be altered in two key ways. The primary dif-
ference is that both styles, instead of floating right, are floated left. Because the #sideColumn
div comes first in the HTML, it will be displayed all the way to the left.

The other changes are to the padding and border properties—in short, everything is
switched to the opposite side. In the sidebar column (now on the left), the right side is padded,
while in the main column (now on the right), the left side is padded. Also in the main column,
the border-right property is changed to border-left. As you can see in Figure 9-15,
these few alterations bring big results.

FIGURE 9-15: Switch the two-column styles to float left and reverse the padding
to change the layout design.

Fluid Main Column on Right
To convert the fixed-width layout into a fluid one where the main column expands with the
browser window, a different series of changes (although equally small) are needed. Three styles
are affected: #wrapper, #mainColumn, and #sideColumn.

12_579851 ch09.qxd 5/4/05 10:49 PM Page 149

TEAM LinG

150 CSS Hacks and Filters: Making Cascading Style Sheets Work

The #wrapper style, previously set to a pixel width equal to the size of the two columns, is
now set to a width: auto. This allows the outer container to grow or shrink in size as dic-
tated by the browser window width. Any additional padding or margins are removed.

#wrapper {
width: auto;

}

Likewise, the fixed width is removed from the main column style. The margin property is
used to position the column a specific distance from the left edge of the wrapper (which con-
forms to the browser window width). In this example, the left margin is 200 pixels. Again, a
border-left property separates the columns.

#mainColumn {
margin: 0 10px 0 200px;
border-left: 2px solid #fff;
font-size: 1em;

}

The sidebar retains its fixed width, but is positioned absolutely.

#sideColumn {
position: absolute;
top: 130px;
left: 10px;
width: 160px;
font-size: .9em;

}

No additional CSS hacks are required to make the leap from fixed-width to fluid layout (see
Figure 9-16).

FIGURE 9-16: A fluid layout typically combines one or more static columns with one
that grows as needed.

12_579851 ch09.qxd 5/4/05 10:49 PM Page 150

TEAM LinG

151Chapter 9 — Integrated CSS Hack Layouts

Three-Column Layouts
Once you’ve mastered two-column layouts (particularly the fluid version), it’s a snap to move
onto three columns, especially when the two side columns are static and the center fluid. You’ll
need a number of CSS hacks (especially for Internet Explorer 5 and 6 on Windows) to get the
layout cross-browser compatible.

The concept is essentially the same as with the two-column, fluid layout—with a few twists to
keep it interesting. For this layout, you’ll need the same styles and divs as before: #wrapper,
#mainColumn, and #sideColumn. For the sake of clarity, it’s best to rename #sideColumn
to #leftColumn. One additional style is needed: #rightColumn.

As discussed earlier in this chapter in the section “Position: Absolute,” you’ll assign a posi-
tion: relative declaration to the #wrapper style. This declaration allows the two side
columns (both absolutely positioned) to be placed correctly. Defining the minimum width
keeps the fluid center section from being reduced undesirably.

#wrapper {
width: auto;
position: relative;
min-width: 740px;

}

Again, to compensate for Internet Explorer’s deficiencies, a block element within the center
section (the h1 heading) is given a width. This declaration will occur within the conditional
comment discussed later in this section.

Both #leftColumn and #rightColumn have a fixed width in addition to being absolutely
positioned. The column on the left derives its position from the top and left edge of the wrap-
per, while the right-side column relies on the top and right edge.

#leftColumn {
position: absolute;
top: 0px;
left: 10px;
width: 160px;
font-size: .9em;

}

#rightColumn {
position: absolute;
top: 0px;
right: 10px;
width: 160px;
font-size: .9em;

}

The center column that contains the main content is anchored by the two static side columns.
When the browser window is resized, the center adjusts its width, according to the amount of
space left by the left and right columns. This size adjustment and initial position is determined
by the margin settings. The left and right margins are calculated from the width of the static

12_579851 ch09.qxd 5/4/05 10:49 PM Page 151

TEAM LinG

152 CSS Hacks and Filters: Making Cascading Style Sheets Work

columns, plus their left and right positioning, as well as the center column’s padding and border
widths.

#mainColumn {
margin: 0 182px 0 184px;
padding: 0 10px;
border-left: 2px solid #fff;
border-right: 2px solid #fff;
font-size: 1em;

}

That’s all that’s needed for modern browsers. But what’s needed to get the design to work
cross-browser? Internet Explorer will have a number of issues to deal with:

� Internet Explorer 5 will misrepresent the Box Model and the two-static-column width
will need to be adjusted.

� All layout styles (#wrapper, #mainColumn, #leftColumn, and #rightColumn)
need the Holly Hack to display properly in Internet Explorer 5 and greater.

� As noted earlier, the min-width property work-around must be defined for the h1 ele-
ment in the center column.

Building a Basic Netscape-Friendly Layout: Another Approach

Although CSS2 wasn’t recommended by the W3C until well after Netscape 4 was on the mar-
ket, the browser does support the position property to a limited degree. To create a two-col-
umn layout with the main content on the left in Netscape 4 (and all modern browsers as well),
you’ll need to structure your page somewhat more simply than if you were targeting only the
more modern browsers. Suppose you want to create a fluid two-column layout with a header
and primary content on the left. The key technique is to set the left column width to a percent-
age and the absolutely positioned right column left value a slightly higher percentage. For
example, if the left column was 70% wide, the right column’s left value would be 71%. These
two declarations will create a small separation between the columns and keep them fluid (see
Figure 9-17). Your core styles would look like this:

#header {

height: 100px;

margin: 0;

padding: 10px 0 0 0;

}

#leftContent {

width: 70%;

margin: 0;

12_579851 ch09.qxd 5/4/05 10:49 PM Page 152

TEAM LinG

153Chapter 9 — Integrated CSS Hack Layouts

padding: 0;

}

#rightContent {

position: absolute;

left: 71%;

margin: 0 0 10px;

}

FIGURE 9-17: Create a two-column layout that works in all released browsers,
starting with Netscape 4.

In the HTML, it’s important that the #rightContent div appears before the #leftContent
div; if the placement is reversed, the right column will appear below the left column, not side-
by-side.

If your implementation calls for more advanced features that Netscape cannot support, your
best course is to attach two style sheets to the page, one for Netscape and another for more
modern browsers, as described in Chapter 2.

You can find an all-round good source for Netscape 4.x layouts at http://www.realworldstyle.
com/.

12_579851 ch09.qxd 5/4/05 10:49 PM Page 153

TEAM LinG

154 CSS Hacks and Filters: Making Cascading Style Sheets Work

Perhaps the best way to handle all of these problems is to use two conditional comments, one
for Internet Explorer 5 specifically and another for Internet Explorer 5 and above:

<!--[if IE 5]>
<style>
#leftColumn, #rightColumn {width: 170px;}

</style>
<![endif]-->
<!--[if gte IE 5]>
<style>
#wrapper, #mainColumn, #leftColumn, #rightColumn {
height: 1%;

}
#mainColumn h1 { width: 740px }

</style>
<![endif]-->

When all the code is in place, you’ll have a very flexible three-column layout, as shown in
Figure 9-18.

FIGURE 9-18: To get the three-column layout to work properly in Internet Explorer,
you’ll need a series of CSS hacks.

Placing Footers Correctly
There are essentially two different types of footers: one that appears at the bottom of the
longest content and another that is set to the bottom of the viewport, regardless. Both, sepa-
rately, are fairly easy to achieve. To put a footer beneath the main content, you simply include

12_579851 ch09.qxd 5/4/05 10:49 PM Page 154

TEAM LinG

155Chapter 9 — Integrated CSS Hack Layouts

a separate div as a footer at the end of that content. The position: fixed property, as dis-
cussed earlier, can be used to keep a footer constantly at the window bottom.

The ideal footer, however, incorporates both behaviors. When the content is longer than the
viewport, you’d scroll down to see the footer at the end. But when the content is shorter, the
footer is always visible, as shown in Figure 9-19.

FIGURE 9-19: When the length of the content is shorter than the window,
the footer is displayed.

You can incorporate the ideal footer into your pages by creating a parallel container for the
page and positioning the footer absolutely within it (at the bottom). You’ll also need to ensure
that the container is at least as tall as the viewport’s height. The first chore is accomplished
with two new styles and matching divs:

#page {
position: absolute;
top: 0;
left: 0;

}
#footer {

position: absolute;
bottom: 0;
width: 100%;
background-color: #FFFFFF;

}

The #page div wraps around all the content in the body tag, essentially becoming a substi-
tute for the document window. The #footer div is placed at the bottom of the HTML, just
before the closing tag of the #page div.

12_579851 ch09.qxd 5/4/05 10:49 PM Page 155

TEAM LinG

156 CSS Hacks and Filters: Making Cascading Style Sheets Work

To ensure the #page container is the same height as the viewport, regardless of the length of
the content, the min-height property is used. This works well for Gecko-based browsers
(and recently, Safari), but fails in Internet Explorer on Windows. However, the height prop-
erty in Internet Explorer delivers the same functionality.

html, body, #page {
min-height: 100%;
width: 100%;
height: 100%;

}

The task now is to reset the height for all non–Internet Explorer browsers. The Child Selector
Hack provides just the filter needed:

html>body, html>body #page {
height: auto;

}

Some browsers (including earlier versions of Safari) that don’t support min-height or apply
height like Internet Explorer will not put the footer at the bottom of the viewport when the
content is short. Instead, the footer will always appear beneath the longest content.

Centering Page Layouts
CSS hacks aren’t always obscure combinations of characters capitalizing on uninterpreted
properties. Sometimes a hack is just a particular method or technique that gets a result hereto-
fore thought unobtainable. Centering an item on the page (both horizontally and vertically in
the browser), while a piece of cake with tables, has long been elusive in CSS—until a particular
hack was found. This particular technique was uncovered and documented by Joe Gillespie,
whose site, Web Page Design for Designers (http://www.wpdfd.com/editorial/
wpd0103.htm#toptip), has been a valuable resource for years.

You’ve already seen numerous examples of how easy it is to center an element horizontally.
Combining a margin-left: auto with a margin-right: auto (or use the shorthand
version, margin: 0 auto) declaration causes almost all modern browsers to take the horizon-
tal space available, split it, and make the side margins equal. Unfortunately, the equivalent dec-
laration to create vertical centering doesn’t work.

This technique is for fifth-generation browsers and above. If you must center an item for
Netscape 4, you’ll need to use a combination of tables and the valign attribute.

To center an element on a page both vertically and horizontally, you’ll need two styles. The first
is applied directly to the element to be centered, while the second wraps around it. The inner
style, #content in this example, is positioned absolutely 50% from the left with the top and
margin-left values set at a negative amount equal to one-half the centered element’s width.
For example, if you’re trying to center an image that is 396 pixels wide by 396 pixels high, your
style rule will look like this:

12_579851 ch09.qxd 5/4/05 10:49 PM Page 156

TEAM LinG

157Chapter 9 — Integrated CSS Hack Layouts

#content {
height: 396px;
width: 396px;
margin-left: -198px;
top: -198px;
position: absolute;
left: 50%;

}

The outer style (named #wrapper here) is also absolutely positioned with a top value at 50%;
however, that’s pretty much the only expected declaration. The width is defined at 100% with a
1-pixel height. Finally, the overflow property is declared to be visible.

#wrapper {
overflow: visible;
position: absolute;
height: 1px;
width: 100%;
top: 50%;

}

What’s really interesting about the technique (apart from the results evident in Figure 9-20) is
that the outer wrapper is completely generic as far as the positioning elements are concerned.
You only have to relate the dimensions of the centered object to the inner style.

FIGURE 9-20: Applying two different styles to divs, enclosing
the image, centers the bull’s-eye in both directions.

12_579851 ch09.qxd 5/4/05 10:49 PM Page 157

TEAM LinG

12_579851 ch09.qxd 5/4/05 10:49 PM Page 158

TEAM LinG

Building Navigation
Systems

By far, the bulk of the navigation in use today on the Web is based on
JavaScript routines used for swapping two or more images, depending
on the visitor’s interaction. CSS-based navigation, however, is on the

rise, as designers discover the inherent advantages to using CSS.

Perhaps the biggest benefit is speed. The pure CSS menu loads much faster
than graphic-based menus. Although button graphics tend to be small, the
sheer number of images involved (one per menu item for every mouse state)
can increase the page download time significantly. A navigation bar (or
navbar) with five menu items (each with a different image for link, active,
hover, and visited states) requires 20 separate images, in addition to the
graphics for the containing element. The same design rendered in CSS may
require anywhere from four images to a single image.

CSS also brings enhanced accessibility to the navigation table. Most CSS
navigation bars rely on styled unordered lists that can be easily rescaled
along with the rest of the page for increased readability. Moreover, screen
readers will never have to hunt for alt text with CSS-based navigation—
and designers won’t have to remember to put it in.

Unfortunately, pure CSS navigation menus can only go so far. A major inabil-
ity of Internet Explorer prevents anything beyond single-level navigation
from being constructed using only CSS definitions. However, combining
CSS with a minimum amount of JavaScript provides the best of both worlds:
CSS sleekness and accessibility, along with advanced, flexible functionality.

Designing CSS Navigation Bars
The primary goal with CSS navigation is to take ordinary text and convert
it into a linked button. When the user’s mouse hovers over the button, a
state change takes place, which alters either the graphic background or the
label in the foreground (or both). A series of such buttons makes up a navi-
gation bar, which can be positioned vertically or horizontally on the page.

˛ Designing CSS
Navigation Bars

˛ Creating Multilevel
Drop-Downs

˛ Crafting CSS Tabs

chapter

in this chapter

13_579851 ch10.qxd 5/4/05 10:46 PM Page 159

TEAM LinG

160 CSS Hacks and Filters: Making Cascading Style Sheets Work

Although almost any linked block element styled correctly could function as a button, unordered
lists are really the perfect fit. More complex navigation areas on a page include subcategories,
and may include sub-subcategories. Lists are ideal for conveying this type of expandable, nested
structure. For older browsers, CSS-based navigation degrades gracefully into an easily under-
stood unordered list of links.

Both of the following sections (one for vertical navigation bars and the other for horizontal) are
built upon lists. Only relatively minor changes are required to switch the navigation bar orien-
tation. Once again, the CSS hacks necessary to get navigation working across modern browsers
are primarily applied for Internet Explorer’s sake. The hacks are slightly different for the two
variations.

Vertical Navigation
The CSS buttons created in this section are comprised of three parts: the HTML list, the CSS
styles, and the background images. Although you can build navigation buttons out of pure CSS
and HTML, to get the most flexibility in your navigation design, you’ll need to create graphic
assets, typically one for each state represented. Unlike with graphics-based buttons, these
images are only used in the background of the button, and the label is CSS-styled text.

The first step is to make (in your favorite graphics program) a rectangle for each navigation
state used. In this example, two states are used: up (the normal button condition) and over (or
hover) position. The over state is also used to represent the selected button of the current page
in a navigation bar. It’s generally a good idea to create your rectangles larger than you would
normally. An oversize graphic allows for expansion when the text is rescaled to be larger. The
rectangles shown in Figure 10-1 are 300 pixels wide by 60 pixels high, even though the default
dimensions will be 200 pixels by 22 pixels.

FIGURE 10-1: Create oversize rectangles in contrasting designs
to use as the background of CSS navigation buttons.

If your graphics include a square, triangle, or other symbol that is intended to align with the text,
center the symbol vertically at either end of the image. Should the text be rescaled, the symbol
will be placed properly.

13_579851 ch10.qxd 5/4/05 10:46 PM Page 160

TEAM LinG

161Chapter 10 — Building Navigation Systems

After saving the rectangles as separate images in a Web-oriented format (GIF, JPEG, or possi-
bly PNG), you’re ready to define the CSS styles. The techniques used here are really intended
to represent a navigation bar in the more modern browsers, and so an external style sheet should
be imported rather than linked. This technique then degrades gracefully and displays a bulleted
list of links in Netscape 4.

The next (and simplest) element to create and examine is the HTML. An unordered list, con-
sisting of a series of links, is placed within a div tag with the id of navholder.

<div id=”navholder”>

Home
Products
Services
About

</div>

You can add as many list items as necessary to create the navigation bar. All list items, however,
must be wrapped within an a tag and linked to another page or to a null value (such as
javascript:;).

The first CSS rule creates a containing style that is required to hold the navigation buttons
together in a series. Although a variety of techniques can be used to place the navigation bar,
one method is to float the navigation holder to the left or right within another wrapper. In this
scenario, the wrapper also contains the main content section. For a vertical navigation bar, you
also want to establish the initial button width:

#navholder {
float: left;
width: 200px;
font-family: Geneva, Arial, Helvetica, sans-serif;
font-size: 0.8em;

}

The next style defined removes the bullets and the standard indentation from the unordered
list. You’ll need to specify both margin and padding as zero to handle the indent properly for
the range of browsers. Set margin at 0 pixels to affect Internet Explorer and Opera, and
padding to 0 pixels for Gecko-based browsers.

#navholder ul {
margin: 0px;
padding: 0px;
list-style-type: none;

}

Tighten the space around the list items by setting its margin to 0 as well:

#navholder li {
margin: 0px;

}

13_579851 ch10.qxd 5/4/05 10:46 PM Page 161

TEAM LinG

162 CSS Hacks and Filters: Making Cascading Style Sheets Work

The next style is what really turns the linked list into a series of buttons. The basic goal is to
change an everyday, run-of-the-mill link into a clickable button area. This is accomplished
with the first important declaration, which changes any a tag within the navigation con-
tainer from an inline element to a block element. Once the a tag is a block element, you can
assign an image to its background to form the button’s graphic. The up state graphic is applied
to the generic a tag. To account for potential text rescaling, the background is positioned at 0
percent horizontally and 50 percent vertically. Padding is used to place the text correctly in
relation to the graphic. In the example shown in Figure 10-2, a left padding of 25 pixels keeps
the text from overlapping the triangle symbol. Finally, a border is assigned to the left, right, and
bottom of the a tag’s block area—the top border is intentionally omitted to avoid double lines
on the buttons.

FIGURE 10-2: Even though the
link is very plain at this stage,
the entire button area is active.

#navholder a {
display: block;
background-image: url(../images/up_btn.gif);
background-repeat: no-repeat;
background-position: 0% 50%;
background-color: #599D7E;
padding: 4px 4px 4px 25px;
border-right: 1px solid #000000;
border-left: 1px solid #666666;
border-bottom: 1px solid #000000;

}

Besides the extended link area, a button’s other main characteristic is interactivity. Interactivity
is handled by specifying styles for the various a tag pseudo-classes: a:link, a:visited,
a:hover, and a:active. Here, the approach is to present one color of text for the up state
(as represented by the a:link and a:visited pseudo-classes), and another for the over state
(a:hover and a:active). In addition, the background image is changed in the over state. In
all instances, the standard underline is removed by setting text-decoration to none.

#navholder a:link, #navholder a:visited {
color: #FFFFFF;

13_579851 ch10.qxd 5/4/05 10:46 PM Page 162

TEAM LinG

163Chapter 10 — Building Navigation Systems

text-decoration: none;
}
#navholder a:hover, #navholder a:active {
color: #000000;
background-image: url(../images/over_btn.gif);
background-repeat: no-repeat;
background-position: 0% 50%;
text-decoration: none;

}

One final style is required to replicate common navigation bar functionality. To indicate which
page the user is currently on, the up state of the relevant button is altered. While it could be set
to a completely different background than seen before, the approach taken in this example (to
use the over state background) is not uncommon. To be able to switch the selected link from
one page to another, a new id style is created (here, #sellink) and the desired declarations
applied to all the ID’s pseudo-classes. This locks the button into one look, regardless of the
user’s mouse position.

#sellink a:link, #sellink a:visited, #sellink a:hover, #sellink
a:active {
color: #000000;
background-image: url(../images/over_btn.gif);
background-repeat: no-repeat;
background-position: 0% 50%;
text-decoration: none;

}

To address issues across the board in modern versions of Internet Explorer, you’ll need to
address versions 5 and 6 separately. Neither version extends the clickable region beyond the
linked text. This can be fixed by assigning a height to the a tag, which causes Internet Explorer
to reassess how far the a tag block element extends. The height: 1 em declaration also elimi-
nates the substantial gap between the list item buttons in Internet Explorer 6, but you’ll need
to specify several more values for Internet Explorer 5 to work properly. The most straightfor-
ward way to handle these CSS hacks is through the use of separate conditional comments for
each version.

<!--[if IE 5]>
<style>
#navholder a {
height: 1em;
float: left;
clear: both;
width: 100%;

}
</style>

<![endif]-->
<!--[if IE 6]>
<style>
#navholder a { height: 1em; }

</style>
<![endif]-->

13_579851 ch10.qxd 5/4/05 10:46 PM Page 163

TEAM LinG

164 CSS Hacks and Filters: Making Cascading Style Sheets Work

When the CSS hacks are inserted, the CSS-based vertical navigation bar works the same
across all modern browsers (see Figure 10-3).

FIGURE 10-3: CSS hacks bring button-
like behavior to linked lists, even in
Internet Explorer.

Horizontal Navigation
Changing your CSS navigation system from a vertical to horizontal orientation really demon-
strates the power of Cascading Style Sheets. Essentially, you only need to minimally adjust
three CSS styles—two of which only need a change to one declaration—and the required hack.

The first CSS style that must be altered to go horizontal is the one that wraps around the navi-
gation system. You’ll recall that with a vertical navbar, a fixed pixel width was used for the
#navholder rule. For the horizontal version, the width is set to 100 percent; this value allows
for any necessary expansion caused by text rescaling for accessibility. The #navholder rule
now looks like this:

#navholder {
float: left;
width: 100%;
font-family: Geneva, Arial, Helvetica, sans-serif;
font-size: 0.8em;

}

More extensive modifications are needed for the list items within the navigation container. To
align the list items in a row, the float: left declaration is applied in combination with a
white-space: nowrap. A margin setting adds a bit of room between the text and the bot-
tom of the button, while zeroing out all other settings. Again, the padding is set to 0 for
Gecko-based browsers.

#navholder li {
float: left;
white-space: nowrap;

13_579851 ch10.qxd 5/4/05 10:46 PM Page 164

TEAM LinG

165Chapter 10 — Building Navigation Systems

margin: 0 0 1em 0;
padding: 0;

}

One final CSS rule is changed to flip the buttons from vertical to horizontal. In the
#navholder a selector’s style, the display: block declaration is removed. If left in place,
this declaration would keep the buttons stacked one on top of another. In the same selector, the
right padding is increased significantly. This alteration increases the size of the buttons and
ensures that there is enough room between the text of one button and the start of another.

#navholder a {
background-image: url(../images/up_btn.gif);
background-repeat: no-repeat;
background-position: 0% 50%;
background-color: #599D7E;
padding: 4px 50px 4px 25px;
border-right: 1px solid #000000;
border-left: 1px solid #666666;
border-bottom: 1px solid #000000;

}

The two conditional comments can be combined into one for the horizontal navbar. The key
declaration here is to set the position property to relative.

<!--[if gte IE 5]>
<style>
#navholder a {
position: relative;
height: 1em;

}
</style>
<![endif]-->

With just these few changes in place, the same HTML content can be represented totally dif-
ferently, as shown in Figure 10-4.

FIGURE 10-4: The horizontal CSS navigation doesn’t remotely resemble
the bulleted list it is based on.

13_579851 ch10.qxd 5/4/05 10:46 PM Page 165

TEAM LinG

166 CSS Hacks and Filters: Making Cascading Style Sheets Work

Creating Multilevel Drop-Downs
The larger a site grows, the greater the need to extend the navigation. A standard solution is to
create hierarchical menus. These menus allow visitors to drill down through a range of cate-
gories, reveal any subcategories for a particular selection, and choose an item from the subcate-
gory list. One way to depict such hierarchical menus is through an expanded navigation bar
with as many drop-down (or fly-out) submenus as needed.

Any attempt to expand the pure CSS navigation system described in the previous sections into
multilevel drop-downs hits a major blockade with Internet Explorer. No number of CSS declara-
tions applied in a conditional comment or other CSS hack is sufficient to overcome Internet
Explorer’s lack of support for pseudo-classes beyond the a tag. To enable CSS-based drop-down
lists for Internet Explorer, you’ll need to incorporate another technology, either JavaScript or
Internet Explorer proprietary behaviors. This example demonstrates how the goal is accom-
plished using JavaScript. The techniques and JavaScript described here are based on the work of
Patrick Griffeths and Dan Webb (http://www.htmldog.com/articles/suckerfish/
dropdowns/).

If you’re interested in exploring the method that uses Internet Explorer’s proprietary behaviors,
you’ll find a good example at http://www.xs4all.nl/~peterned/examples/cssmenu.
html. If you decide to go this route, keep in mind that XP Service Pack 2 requires the MIME type
set to text/x-component for .htc files.

The HTML list structure really proves its worth when the navigation expands to multilevel
drop-downs. The key is to nest unordered lists with the parent list item. In the following code,
used throughout this example, unordered lists are nested two deep, one under the Products cat-
egory and another under Gadgets:

<ul id=”nav”>
Home
Products

Widgets
Gadgets

Gadget 1
Gadget 2
Gadget 3

Gidgets

Services
About

13_579851 ch10.qxd 5/4/05 10:46 PM Page 166

TEAM LinG

167Chapter 10 — Building Navigation Systems

The outermost ul tag is given an ID (here, nav) to help specify the required CSS selectors.
With the ID attribute in place, you can pinpoint ul and li tags at any level. The first task is
to establish the general guidelines for any ul tags within the navigation, including the primary
one, #nav. In addition to removing the bullets from the unordered lists and establishing base-
line values for padding, margin, and width, the line-height property is set to 1. This
declaration overcomes a problem that keeps the nested ul tags from aligning properly. The
width of these outer containing elements is determined by the number of main menu items.
With four menu items, the width value is 60em; if you had five, the value would more likely
be 72em.

#nav, #nav ul {
list-style: none;
padding: 0;
margin: 0 0 1em 0;
width: 60em;
line-height: 1;

}

The list items within all the navigation lists are then floated to the left and kept from wrap-
ping, with minimal margins and padding:

#nav li {
float: left;
white-space: nowrap;
margin: 0;
padding: 0;
width: 10em;

}

To ensure that all the button items are sized the same, a set width is provided for all the a tags
within the #nav ID. You’ll also need to set the display property to block to achieve the
full button-clickable area.

#nav a {
background-color: #599D7E;
padding: 4px 50px 4px 25px;
border-right: 1px solid #000000;
border-left: 1px solid #666666;
border-bottom: 1px solid #000000;
display: block;
width: 10em;
w\idth: 6em;

}

Note the use of the Selector Hack to set a smaller width value for Gecko-based browsers,
Internet Explorer, and Safari. The larger width is applied by Internet Explorer 5.x to overcome
its misrendering. This technique is used throughout this code.

It’s considered a best practice to indicate the availability of any submenus in some way. If your
design doesn’t call for background images for the buttons, you can use CSS to display such a

13_579851 ch10.qxd 5/4/05 10:46 PM Page 167

TEAM LinG

168 CSS Hacks and Filters: Making Cascading Style Sheets Work

symbol whenever needed. In addition to the graphic itself, you’ll need a CSS class defined
that sets the background image to align vertically in the center and to the right, horizontally,
like this:

#nav a.parentItem {
background: url(../../images/right_triangle.gif) center right

no-repeat;
}

Any buttons with submenus should be given the class of parentItem.

For this example, the background images and properties applied to the navigation menus in the
previous sections were removed.

If you test your page at this point, all the menu items (including the items intended to be hid-
den until dropped down) are displayed, as shown in Figure 10-5.

FIGURE 10-5: The navbar is undesirably spread out because the submenus are still visible.
Note the parent items with the right-facing triangle.

To hide and reveal the submenus interactively, you’ll need to define a series of CSS rules that
rely on the nested li tag’s :hover pseudo-class. Because Internet Explorer does not support
pseudo-classes on anything except the a tag, it’s time to introduce the needed JavaScript. The
following script, adapted from the code developed by Griffeths and Webb, programmatically
gives each list item within the #nav container a class, subHover. Internet Explorer has no
problem styling list items with a standard class. The beauty of this script is that although small
(only 12 lines), it applies to all submenu items, regardless of how deep.

<script type=”text/javascript”>
subHover = function() {

var subEls =
document.getElementById(“nav”).getElementsByTagName(“LI”);

for (var i=0; i<subEls.length; i++) {
subEls[i].onmouseover=function() {

this.className+=” subhover”;
}
subEls[i].onmouseout=function() {

this.className=this.className.replace(new RegExp(“
subhover\\b”), “”);

13_579851 ch10.qxd 5/4/05 10:46 PM Page 168

TEAM LinG

169Chapter 10 — Building Navigation Systems

}
}

}
if (window.attachEvent) window.attachEvent(“onload”, subHover);
</script>

JavaScript alone won’t do the trick, however. You must define a few CSS rules with some
very precise selectors to pull it all together. By default, any nested unordered lists within the
navigation should be hidden. As noted elsewhere in this book (for example, see the section
“Implementing Flash Replacement” in Chapter 7), the most effective way to hide elements
visually and still keep them accessible to screen readers is to position them off-screen to the
left. You’ll need to set the position: absolute declaration to make sure the elements are
placed properly, as in this style:

#nav li ul {
position: absolute;
left: -999em;
height: auto;
width: 8em;
margin: 0;

}

While hiding all the nested ul tags in one default style is perfectly okay, revealing them all at
once is not. You don’t, after all, want to show both levels of menus when you hover over the
button for just the first. Consequently, a style is defined that moves any nested ul tags below
the current one off-screen. Because the li:hover pseudo-class is required for this selector,
you’ll also need to include its Internet Explorer equivalent that uses the JavaScript-inserted
subhover class.

#nav li:hover ul ul, #nav li.subhover ul ul {
left: -999em;

}

To reveal the desired submenu, the left property is set to auto for items that are being hovered
over and their immediately nested ul tags. The left: auto declaration brings the list buttons
back into the proper position. Again, selectors for both li:hover and li.subhover are used.

#nav li:hover ul, #nav li li:hover ul, #nav li.subhover ul, #nav
li li.subhover ul {

left: auto;
}

If you expand beyond a two-level-deep drop-down menu, you must add additional selectors to
both hide and show the menus. For example, to add another submenu to this example, the CSS
rules would look like this (additional material bolded for emphasis):

#nav li:hover ul ul, #nav li:hover ul ul ul, #nav li.subhover ul
ul, #nav li.subhover ul ul ul, {

left: -999em;
}

13_579851 ch10.qxd 5/4/05 10:46 PM Page 169

TEAM LinG

170 CSS Hacks and Filters: Making Cascading Style Sheets Work

#nav li:hover ul, #nav li li:hover ul, #nav li li li:hover ul,
#nav li.subhover ul, #nav li li.subhover ul, #nav li li
li.subhover ul {

left: auto;
}

Although the interactivity is handled, to get the right look, you must style the nested list items,
anchor tags, and unordered lists. The following rules work well for the example menu (see
Figure 10-6):

#nav li li {
padding-right: 0;
width: 8em

}

#nav li ul a {
width: 10em;
w\idth: 4em;

}

#nav li ul ul {
margin: -1.75em 0 0 11em;

}

FIGURE 10-6: JavaScript and creative CSS render this drop-down menu properly
across all modern browsers.

Naturally, your own CSS styles will vary in width and margin settings to get the optimum fit.

Crafting CSS Tabs
Tabs provide another approach to the problem of multitiered navigation. This type of naviga-
tion system relies on the folder tab metaphor. Here, the visitor switches from one main cate-
gory page to another by clicking on a tab representation. Any subcategories appear below the

13_579851 ch10.qxd 5/4/05 10:46 PM Page 170

TEAM LinG

171Chapter 10 — Building Navigation Systems

primary categories, usually in a single line. The technique outlined in this section uses CSS
only—no JavaScript is required—with a minimal number of hacks to bring Internet Explorer
into line.

Many talented designers have created tabbed navigation examples in CSS. Much of the tech-
nique covered in this section is based on the work by Adam Kalsey (http://www.kalsey.
com/tools/csstabs/).

A key benefit to this style of CSS tabbed navigation is compactness. The complete HTML
code for navigation (including all categories and subcategories) can be included on every page.
The CSS is designed to highlight the tab for the page’s primary category and only show the
related subcategories. Best of all, the navigation is structured as a highly accessible unordered
list, which degrades gracefully to a series of links in older browsers. Here, for example, is the
HTML for a site with four main categories, two of which have subcategories:

<ul id=”nav”>
<li id=”cat1”>Home
<li id=”cat2”>Products
<ul id=”subcat2”>
Widgets
Gadgets
Gidgets

<li id=”cat3”>Services
<ul id=”subcat3”>
In Office
In Home
Online

<li id=”cat4”>About

You’ll notice that each of the main categories, represented by li tags, includes an id attribute
(cat1, cat2, and so on). Likewise, the two subcategories are identified with their own id val-
ues, subcat2 and subcat3. The CSS used in this technique relies heavily on being able to
pinpoint individual sections via precise selectors. The id attribute makes this possible.

As in previous topics in this chapter, the top-level ul tag is also given an id, nav. The CSS sets
the font characteristics for all the main categories as well as the subcategories initially. From a
design standpoint, the #nav style is used to establish a common bottom border that will visually
tie the primary category tabs together. A padding-bottom value positions the border appro-
priately. The padding-bottom value will need to be adjusted for Internet Explorer.

#nav {
margin : 0;
font-family: “Trebuchet MS”, Arial, sans-serif;
font-size: 1.25em;
font-weight: bold;

13_579851 ch10.qxd 5/4/05 10:46 PM Page 171

TEAM LinG

172 CSS Hacks and Filters: Making Cascading Style Sheets Work

padding-left : 10px;
padding-bottom : 20px;
border-bottom: 5px solid #990000;

}

The next CSS rule removes the bullets from the unordered list and sets up a linear display. The
margin and padding attributes are zeroed out to provide a baseline from which to position
the elements.

#nav ul, #nav li {
display : inline;
list-style-type : none;
margin : 0;
padding : 0;

}

Next, the basic links are styled. A background color (the same as the previously defined bottom
border) is applied to achieve a tab-like appearance (see Figure 10-7). The size of the tab is con-
trolled by the padding and line-height. To represent interactivity, a :hover pseudo-class
is defined that changes the font color for the main category tabs.

FIGURE 10-7: Combining restyled bulleted list items
with a bottom border gives a tab-like appearance.

#nav a:link, #nav a:visited {
color : #FFFFFF;
float : left;
font-size : small;
line-height : 1.5em;
margin-right : 8px;
padding : 2px 10px 2px 10px;
text-decoration : none;
background-color: #990000;

}

13_579851 ch10.qxd 5/4/05 10:46 PM Page 172

TEAM LinG

173Chapter 10 — Building Navigation Systems

#nav a:hover {
color : #66FFFF;

}

Although this example uses only background and foreground colors, you could easily add back-
ground images to these style rules. Any images used should be created oversized to handle
rescaled text correctly.

At this stage of development, all the main category buttons look the same. An important
aspect of this type of navigation is a clear indication of the current page. You want the tab of
the current page to stand out. To achieve this effect (and retain code compactness and portabil-
ity), you must add a class attribute to the body tag that identifies the page, like this:

<body class=”category2”>

This class is then referenced in the CSS so that whenever a particular page is rendered, its
related tab is highlighted. Here’s what the CSS rule looks like:

body.category1 #nav li#cat1 a,
body.category2 #nav li#cat2 a,
body.category3 #nav li#cat3 a,
body.category4 #nav li#cat4 a {
background : #fff;
color : #000;
border-top-width: 1px;
border-right-width: 1px;
border-left-width: 1px;
border-top-style: solid;
border-right-style: solid;
border-left-style: solid;
border-top-color: #990000;
border-right-color: #990000;
border-left-color: #990000;

}

In addition to altering the background and font color of the tab, a border is drawn on three
sides: top, left, and right. The bottom is intentionally left out so that the design resembles a
currently selected folder tab, as shown in Figure 10-8.

The subcategories are next on the list for styling. Initially, these nested unordered lists are hid-
den. In other sections of this chapter, the secondary navigation links were placed off to the left
for accessibility reasons. However, for this type of navigation, only the current page’s subcate-
gories are desired. A masking technique is used, which also hides the unneeded subcategories
from screen readers, as well as the visual display.

#nav #subcat1,
#nav #subcat2,
#nav #subcat3,
#nav #subcat4 {
display : none;

}

13_579851 ch10.qxd 5/4/05 10:46 PM Page 173

TEAM LinG

174 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 10-8: The highlighted tab changes according to
which class is assigned to the body tag. Here, the class
is set to category2, Products.

The next step is to define the CSS rules governing the selected subcategories. Again, the class
of the body tag determines which nested list is actually rendered with the defined styles. When
displayed, the secondary navigation will also be inline, but without the box-like background
and a slightly smaller font, as shown in Figure 10-9.

FIGURE 10-9: A different sub-navigation (or none at all) is
automatically shown depending on which tab is clicked.

body.category1 #nav ul#subcat1,
body.category2 #nav ul#subcat2,
body.category3 #nav ul#subcat3,
body.category4 #nav ul#subcat4 {

13_579851 ch10.qxd 5/4/05 10:46 PM Page 174

TEAM LinG

175Chapter 10 — Building Navigation Systems

display : inline;
left : 10px;
position : absolute;
top : 35px;

}

body.category1 #nav ul#subcat1 a,
body.category2 #nav ul#subcat2 a,
body.category3 #nav ul#subcat3 a,
body.category4 #nav ul#subcat4 a {

background : #fff;
border-left : 1px solid #ccc;
color : #990000;
font-weight : normal;
line-height : 1.2em;
margin-right : 4px;
padding : 2px 10px 2px 10px;
text-decoration : none;
border: none;

}

One final style rule, which sets the :hover color for the subcategories, completes the naviga-
tion section of the page. The !important declaration is used to make sure the change is
applied.

#nav ul a:hover {
color : #0066FF!important;

}

Only a couple of CSS hacks are required to make this navigation work well in Internet Explorer.
First, the padding-bottom property is slightly increased (here, by 3 pixels) to compensate for
rendering differences. Next, the current subcategories are moved down an equal amount. Both
modifications can easily be enclosed in an Internet Explorer conditional comment and your nav-
igation is ready to go (see Figure 10-10).

<!--[if IE]>
<style type=”text/css”>
#nav {

padding-bottom : 23px;
}
body.category1 #nav ul#subcat1,
body.category2 #nav ul#subcat2,
body.category3 #nav ul#subcat3,
body.category4 #nav ul#subcat4 {

top : 38px;
}
</style>
<![endif]-->

13_579851 ch10.qxd 5/4/05 10:46 PM Page 175

TEAM LinG

176 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 10-10: With the CSS hack in place, the resulting
page works as expected, cross-browser.

13_579851 ch10.qxd 5/4/05 10:46 PM Page 176

TEAM LinG

Troubleshooting
CSS

As day follows night, bugs follow CSS-based Web pages—or maybe
they just seem inevitable. Although the actual writing of HTML
markup and CSS styles can be accomplished with nothing more

than a text editor such as Notepad or Simple Text, the actual achievement
of satisfactory pages across target browsers is anything but simple. Testing
(and especially debugging) CSS-based Web pages is an essential—and often
painful—step prior to pushing the site live.

The goal of this chapter is to reduce the duration and stress of CSS-related
bug hunting as much as possible. In addition to addressing a specific major
Internet Explorer failing (known as the flash of unstyled content), this chapter
also lays out a general debugging strategy. Finally, you’ll find a checklist of
the most common bugs and their solutions.

Avoiding the Flash of Unstyled Content
Only Web designers understand that a Web page exists in the dimension of
time as well as the two-dimensional (2D) world of the browser window.
Any designer who experiences a site over a slow dial-up connection will
attest that the time a page takes to display is significant. Generally, CSS-
based layouts load much faster than table-based ones. Unfortunately, the
speed at which a site appears is not the designer’s only concern. How the
page is loaded and rendered has also become an issue.

Under certain conditions, users of Internet Explorer browsers (versions 5
and greater) will experience a moment where the raw, unstyled page is visi-
ble shortly before the CSS styles are applied. This flash of unstyled content
(FOUC) was initially documented by Rob Chandanais (http://www.
bluerobot.com/Web/css/fouc.asp). Although it only happens for a
second, and under very specific conditions, the effect is quite unnerving—
especially to any designers who have spent many, many hours crafting
their CSS.

What does a FOUC look like? Naturally, it depends entirely on the page
and CSS design, but Figures 11-1 and 11-2 illustrate the before and after
states of this effect.

˛ Avoiding the Flash
of Unstyled Content

˛ Debugging CSS
Problems

˛ CSS Usual Suspects
Checklist

chapter

in this chapter

14_579851 ch11.qxd 5/4/05 10:49 PM Page 177

TEAM LinG

178 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 11-1: Just for a second, the page visitor using Internet
Explorer 5 or higher sees the page like this. . .

FIGURE 11-2: . . .when it’s really intended to look like this.

A Web page exhibits the FOUC when all of the following factors are in play:

� Viewed by Internet Explorer 5 or higher.

� External style sheet is attached with a single @import tag.

� No link tag is used in the head area.

14_579851 ch11.qxd 5/4/05 10:49 PM Page 178

TEAM LinG

179Chapter 11 — Troubleshooting CSS

� No other script tag is used in the head area, aside from the one used for the @import
tag, or before the content in the body area.

� The page is viewed for the first time. Subsequent viewings that cache page elements stop
the FOUC from appearing.

It’s interesting to note that this phenomenon occurs under the purest of CSS circumstances
(that is, with only a single @import statement). Ironically, the movement to code to standards
and to stop supporting Netscape 4.x has caused many a designer to encounter the FOUC bug.
For example, until recently, the articles found on a major international news Web site suffered
from FOUC.

Although this FOUC can be quite annoying, it’s pretty easy to fix. The condition disappears if
you include one or more link tags in the head area. If your CSS requirements don’t naturally
incorporate either of these elements, include a link to an alternative CSS file or a media-specific
(such as print) CSS link.

If you link to an external CSS file to solve the FOUC problem, be sure the file is posted to the server
and contains some content—even a single comment will suffice. Failure to link to an existing
valid file could cause problems with certain browsers, notably Internet Explorer 5 for the Mac.

An additional script tag in the head area also prevents the FOUC occurrence. It doesn’t
matter what the type attribute of the script tag is assigned to: either JavaScript or
VBScript work equally well.

Debugging CSS Problems
I worked, for a while, as a manager for computer trade shows (anyone remember the Commodore
Amiga?). When asked to describe my duties during the actual show, I always replied, “Fireman.”
I always felt my role was to stop small problems before they became large ones. Although the
troubles that arose were, thankfully, never literally fires, they could certainly grow out of control
like one if left unattended.

I get the same sense of being a fireman when it comes to debugging CSS. In fact, my overall
philosophy for attacking CSS bugs is pretty close to my show management method: do the
best job you can during setup and when (not if) a problem arises, isolate it until you can fix it.
With CSS, the most important step you can take is to code with CSS-compliant browsers in
mind. If you target the most popular browser (Internet Explorer 6), rather than a CSS-savvy
one (such as Firefox or Safari), you’ll spend much more time trying to bring the rendered page
into line, cross-browser.

You should begin testing once you have the first significant portion of your page completed.
The longer you wait to view your pages in all your target browsers, the more complex and the
more difficult it is likely to be to isolate your bugs. In general, your watchword should be “Test
Early, Test Often.”

14_579851 ch11.qxd 5/4/05 10:49 PM Page 179

TEAM LinG

180 CSS Hacks and Filters: Making Cascading Style Sheets Work

It is critical that you are capable of viewing your pages in all of your target browsers. If you don’t
have all the necessary versions installed, consider using a service like BrowserCam (http://
www.browsercam.com). Its main claim to fame is its Screen Capture Service, which allows you
get a snapshot of any submitted URL being rendered on one (or all) of the more than 40 browsers
available. The browsers range across platforms, companies, and versions. While the static shots
returned by the Screen Capture Service are extraordinarily helpful for layout control, they don’t
reflect any interactivity. BrowserCam recently added a Remote Access Service that allows you to
experience your Web site through another a computer—without having to own it.

Here’s a general roadmap to debugging CSS:

1. After you’ve created a page that looks the way you want in a CSS-compliant browser,
view it in all of your target browsers. Note where problems emerge and with what
browser.

Because Internet Explorer bugs are among the most prevalent (and the most heavily doc-
umented), try to determine if the issues you’re seeing fall into that category. One tech-
nique is to test in two or more non–Internet Explorer browsers (such as Firefox and Safari),
as well as one or more versions of Internet Explorer. If you’re not seeing the problem in the
non–Internet Explorer browsers, but are in Internet Explorer, you’ve most likely narrowed
down your bug to being Internet Explorer–related.

2. Check to see if any the problems you’ve encountered are among the most common.
(See the section “CSS Usual Suspects Checklist” later in this chapter for a list of the
most frequently seen CSS bugs.) If any fall into that category, implement the known
solution and retest.

3. For any remaining bugs, make a copy of the page to work on. From this point on, the
hunt for bugs intensifies and you don’t want to lose work. Reduce the page to its minimal
HTML elements that still exhibit the buggy behavior. In other words, scale back the
paragraphs of content to a sentence or two, but if the problem only appears when a cer-
tain amount of content is applied, keep at least that much content. The goal now is to
track down the bug and squash it, so you want to make sure it is always occurring.

4. Transfer any external CSS into style tags embedded in the head area. The reasons to do
this are twofold. First, it saves you from going back and forth in two different files, which,
in turn, greatly speeds up the process. Second, incorporating the CSS into the Web page
eliminates caching problems. Often, when you’re viewing the same file over and over again
for testing purposes, your browser will cache the previous version of an external CSS file,
even if it has been changed. If you forego this step and keep your CSS separate from the
Web page, chances are you’ll be making changes that should have a physical effect on the
page, but you’ll never see them—unless you reload. Play it safe and embed your styles in
your page where caching is never a problem.

5. Organize your CSS by section affected. Suppose one of your navigation menus is out of
alignment. Group the CSS so that all the navigation-related styles are together. Likewise,
you would put all the CSS rules affecting the content together and all of the CSS targeting
the header together.

14_579851 ch11.qxd 5/4/05 10:49 PM Page 180

TEAM LinG

181Chapter 11 — Troubleshooting CSS

6. Now you’re ready to actually begin the bug hunt in earnest. The strategy at this stage is
to remove sections of the CSS that don’t affect the bug. You must isolate the bug before
you can deal with it. Start by commenting out the largest possible portion that retains
the bug. If the section you comment out removes the bug, replace it and comment out
the other styles (see Figure 11-3).

FIGURE 11-3: Tools that color-code your CSS are great for working with
commented-out sections while debugging.

7. Repeat Step 6 as you continue to narrow down the amount of code that exhibits the
buggy behavior. Each time you locate the portion of the style sheet that contains the
problem, comment out a smaller portion of the styles within that region.

8. When you locate the exact style rule(s) or properties, try applying alternative values to
the properties. Keep in mind that although one declaration may appear to be the culprit,
the fix may lie in parent areas.

There is often quite a bit of trial-and-error once you’ve isolated the bug. However, like many
other learning curves, the CSS bug hunt becomes less time-intensive after you’ve begun to see
the same problem over and over again.

If you’re a Firefox or Mozilla user, there’s a great add-on that’s perfect for helping in the debug-
ging process. The Web Developer toolbar, created by Chris Pederick, allows you to browse to a
page and quickly outline block-level elements, or any other element of your choosing. You can
also view the CSS of a page and—best of all—edit it while it is still in the browser. The Web
Developer toolbar is freely available at http://www.chrispederick.com/work/firefox/
webdeveloper/.

14_579851 ch11.qxd 5/4/05 10:49 PM Page 181

TEAM LinG

182 CSS Hacks and Filters: Making Cascading Style Sheets Work

CSS Usual Suspects Checklist
One of the axioms of CSS woes is, “Déjà vu, all over again.” Although never-seen-before bugs
do occur, the chances of you encountering one are much less than you’d think. For the most part,
issues that arise have been seen (and dealt with) many times before, by many other designers.
Before you engage in a search-and-destroy mission on your own, it’s a good idea to double-
check the most common bug-related scenarios. For this exercise, you should work from the top
(the server) down to the document’s CSS level. The broadest categories are not only the most
impactful, they are also the easiest to confirm and fix.

Verifying Server-Side Setup
Web servers are responsible for delivering (or serving) a requested page and all its constituent
parts, in the proper format. An element’s format is determined by its file extension and the
associated MIME type, which is set by the server administration. If the MIME type for .css
is not set to text/css, any external CSS file will be interpreted as plain text or HTML.
In either case, your page will not be styled.

Here’s a case where the forgiving nature of one browser can lead to the downfall of a more
strictly interpreting one. For the most part, Internet Explorer will apply any externally defined
CSS files appropriately, regardless of the MIME type set (or not set) on the server. Browsers
such as Firefox and Mozilla, however, only render CSS as they’re told to render CSS (in other
words, only if the server tells them to). This browser split leads to the circumstance where the
administrator, viewing your page through Internet Explorer, sees a fine example of a CSS-
designed page while you, as the developer using a Gecko-based browser, are only seeing the
raw, unstyled HTML.

Although this problem is admittedly pretty rare, it’s a core issue and must be resolved. You’ll
most likely encounter this issue when working with a new client or moving to a new server.
The .css MIME type must be set to text/css either directly through the server settings, or,
if you’re working with a commercial host, it’s possible (but not certain) that you can add the
.css MIME type through the administration interface. You’ll most often see this feature when
you are working with an Apache server. This process inserts an .htaccess file at the server root
with the following code:

AddType text/css .css

If you have Telnet access to your Apache-hosted site, you can accomplish the same goal manually.

Approaching Document-Level Issues
With the server squared away, it’s time to turn to the document. The concerns to watch out for
in this section are general problems that could easily trip you up when you’re tearing apart your
CSS styles looking for a particular property. Always remember to step back and take a look at
the forest before examining each individual CSS-defined tree.

Handling the XML Prolog
When XHTML began to become popular, many designers (including myself) mistakenly
included an XML prolog at the top of our new pages. An XML prolog is used in XML files to

14_579851 ch11.qxd 5/4/05 10:49 PM Page 182

TEAM LinG

183Chapter 11 — Troubleshooting CSS

declare the version of XML used, declare the encoding, and define specific namespaces, if any,
like this:

<?xml version=”1.0” encoding=”iso-8859-1”?>

My excuse, poor workman that I am, is to blame my tool: Macromedia Dreamweaver MX. In
this release of the program, Macromedia began support for XHTML and each new page in that
format included the XML prolog. Unfortunately, Internet Explorer 6 interprets the XML prolog
as a request to enter quirks mode—which basically makes Internet Explorer 6 render like Internet
Explorer 5. Macromedia’s next release, Dreamweaver MX 2004, corrected this problem and the
XML prolog is no longer automatically included with every new XHTML page.

If you do want to force Internet Explorer 6 into quirks mode, it’s best to use the doctype
switching technique and remove any XML prolog from your pages. Numerous ways exist to
ensure quirks mode is engaged. One technique is to declare a transitional DTD for HTML
4.01 transitional and leave out the referring URL:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>

To use the same doctype, but set Internet Explorer 6 into standards mode, include the URL,
as follows:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

You can also set standards mode by declaring a doctype for XHTML or HTML 4.01 strict.

Applying Media Types Correctly
The ability to address different media types is a key concept in the W3C’s philosophy on
Cascading Style Sheets. With CSS, you can render the same content differently (and appropri-
ately) on different media by specifying a media type (such as screen, print, or projection).
There are two ways to declare a target for a specific style sheet: @media and @import.

If you’re using @import, the basic syntax looks like this:

@import url(mainstyle.css) screen;
@import url(pagestyle.css) print;

Internet Explorer, along with all other modern browsers, understands the @import rule, but
not when a media type is declared within it. Any such rules are ignored by Internet Explorer,
versions 6 and below. To use @import, making sure that your style sheet is read by these
browser versions and applied correctly for the proper medium, rely on the media attribute in
the style tag:

<style type=”text/css” media=”screen”>
<!--
@import url(mainstyle.css);

-->
</style>

<style type=”text/css” media=”print”>
<!--
@import url(pagestyle.css);

-->
</style>

14_579851 ch11.qxd 5/4/05 10:49 PM Page 183

TEAM LinG

184 CSS Hacks and Filters: Making Cascading Style Sheets Work

Although this approach is more verbose, it gets the job done, cross-browser. Another strategy is
to specify @media rules for those declarations that must be specifically changed for a different
medium:

<style type=”text/css”>
@media print {
body {background: white; color: black; }
#nav {display: none; }

}
</style>

Internet Explorer interprets @media rules correctly.

Validating Your Document
Some Web designers regard a Web page that validates under both HTML and CSS guidelines
as the Holy Grail. I prefer to think of validation as an extremely useful tool, but not a religion.
CSS validation, however, is suited perfectly for debugging your code. A lot of designers hand-
code their CSS rules, and it’s perfectly understandable how an opening or closing brace (or
curly bracket) could be left out. CSS validators, however, can catch these types of syntax errors
(see Figure 11-4) and many others.

FIGURE 11-4: Validate your CSS to check for syntax errors such as
omitted closing curly brackets.

Numerous CSS validation services are available. I use the one from the W3C located at http://
jigsaw.w3.org/css-validator/.

Remember that CSS and HTML work together to create your page. You’ll also want to ensure
that your HTML is error-free. To validate your HTML, visit http://validator.w3.org/.

14_579851 ch11.qxd 5/4/05 10:50 PM Page 184

TEAM LinG

185Chapter 11 — Troubleshooting CSS

Avoiding General CSS Errors
Although there are plenty of browser-related bugs you should be aware of, missteps that you
take in your coding can cause CSS problems all on their own. Some issues arise because the
designer is overlooking a key CSS principle, whereas others are based on incorrectly held
assumptions. Regardless of the root cause, ensure that all your own ducks are in a row before
you begin hunting down browser-based bugs.

Getting Specificity Right
Have you ever found yourself changing a CSS property in the code only to have the effect
never appear? If you’re sure you’re working with the right selector, chances are there is another
declaration with a higher specificity—and the same property—that is overriding your changes.
Say, for example, you’re trying to change the color from blue to red for the p tags within the
div with an ID of content and you make the change to this CSS rule:

#content p {
color: red;

}

You make the change to red, but nothing happens; the paragraphs still render blue. After a lit-
tle exploration of your CSS file, you find another rule:

div#content p {
color: blue;

}

The selector on the second rule, div#nav p, will always control the properties because it is
more specific. Specificity is listed as a series of four values, each in its own column:

� Styles—If a selector uses the style attribute (commonly known as an inline style), the
first column is equal to 1; otherwise it is 0.

� IDs—The number of IDs in the selector makes up the second column.

� Classes and pseudo-classes—The total number of classes and pseudo-classes used in the
selector is represented in the third column.

� Elements and pseudo-elements—The fourth column is equal to the number of elements
(or tags) and pseudo-elements found in the selector.

Specificity is generally shown as four columns separated by dashes or hyphens (for example,
0-1-0-1). Once you calculate the specificity of your selectors, it’s easy to see which one is
higher:

#content p { }
/* One ID and one tag; specificity= 0-1-0-1 */

div#content p { }
/* One ID and two tags; specificity= 0-1-0-2 */

14_579851 ch11.qxd 5/4/05 10:50 PM Page 185

TEAM LinG

186 CSS Hacks and Filters: Making Cascading Style Sheets Work

If two selectors address the same property, the property value for the selector with the higher
specificity is rendered.

Another CSS concept related to specificity is the !important property. When !important
is added following a property’s value, the given value always overrides any applicable declaration,
regardless of specificity ranking. For example, in the contest between these two styles, the first
one—with the less-specific selector, but with the !important property—will be the rendered
style:

#content p {
color: red !important;

}
div#content p {
color: blue;

}

Be very careful not to overuse the !important property because it will even override user-
defined styles, which are often implemented for accessibility reasons.

Setting Up Proper Paths
Web pages (whether HTML, XHTML, or generated by an application server) rely on external
documents including CSS files. Often, the path to the external style sheet is stated relatively,
like this one:

@import url(styles/mainstyles.css)

Translated into English, this path would read “import the mainstyles.css file in the styles folder
that’s in the same directory as the current Web page.” Suppose you’re upgrading a page that
includes an inline div tag with a background image. The code would look like this:

<div id=”sidebar” style=”position:absolute; left:100px; top:200px;
width:300px; height:150px; z-index:1; border: 1px none #000000;
background-image: url(images/sidebar.jpg);”></div>

Note that the background image, sidebar.jpg, is in a folder called images; the images
folder is also in the same directory as the current file. When you’re converting inline styles to
external style sheets, you must take extra care to get the path correct. The external style sheet
will, in this case, have a different path than the inline style:

#sidebar {
position; absolute;
left: 100px;
top: 200px;
width: 300px;
height: 150px;
z-index: 1;
border: 1px none #000000;
background-image: url(../images/sidebar.jpg);

}

14_579851 ch11.qxd 5/4/05 10:50 PM Page 186

TEAM LinG

187Chapter 11 — Troubleshooting CSS

Because the images and styles folders are situated on the same level of the directory tree, to
properly locate the background image, you must go up a level from the location of the CSS file
(styles) and back into the images folder. Put simply, if you use relative paths, ensure that the
path to your external style sheet is relative to your Web page, and the paths to all CSS-inserted
images is relative to the CSS file.

There’s one other “gotcha” associated with CSS-declared paths. While it may seem natural to
use single quotation marks with the url() syntax, Internet Explorer 5 for the Mac does not
recognize it and will not render the defined style.

Ordering Pseudo-Classes Properly
Another factor that is involved in determining the actual property value applied is the style order.
If the specificity is the same—and the !important keyword is not used—the rule presented
last in the file is given precedence. Pseudo-classes (such as a:link, a:hover, and so on) are
among the areas most likely to be affected, primarily because they are used together so often.

The four different pseudo-classes associated with links must be defined in the following order:
a:link, a: visited, a:hover, and a:active.

a:link {
color: blue;
font-weight: bold;
text-decoration: none;

}
a:visited {
color: purple;
font-weight: bold;
text-decoration: none;

}
a:hover {
color: red;
font-weight: bold;
text-decoration: underline;

}
a:active {
color: yellow;
font-weight: bold;
text-decoration: underline;

}

The abbreviation LVHA is often suggested to help designers remember the proper sequence,
along with the somewhat cynical mnemonic LoVe, HA! An alternative for ultra-geeks to consider
is Lord Vader Has Anakin.

If you don’t put your definitions in this order, you won’t get the effects you desire across all
browsers. Internet Explorer browsers tend to be more forgiving in this area, but sticking to
the proper sequence will ensure that your intentions are preserved in every browser that sup-
ports pseudo-classes. (You might remember that Netscape 4 doesn’t support the a:hover
pseudo-class.)

14_579851 ch11.qxd 5/4/05 10:50 PM Page 187

TEAM LinG

188 CSS Hacks and Filters: Making Cascading Style Sheets Work

Another pseudo-class affected by code position is :focus. Suppose you want to really highlight
the last clicked link, more than all the other links previously clicked, but have the highlight vanish
when the link is about to be clicked again. By combining the :focus and :hover pseudo-class,
you could achieve the proper effect—but only if you define them in the following order:

a:focus { background: yellow; }
a:focus:hover { background: none; }

Declaring Measurement Units
Many CSS properties require a numeric value, and almost all of these properties allow a wide
range of measurement units. You can, for example, specify padding in pixels, points, centime-
ters, millimeters, inches, picas, ems, exes, or percentages. Because all browsers do not require a
measurement unit for zero values, it’s easy for designers to mistakenly leave the measurement
unit off the other values for the same property.

Suppose you’re setting the margin for a content area and you want a zero margin for top and
bottom, but you do want to specify left and right margins. You might, in error, define the mar-
gin property this way:

#content { margin: 0 150 0 20; }

The results for such a declaration would vary widely across browsers. To get the desired effect,
you’d have to remember to declare unit measurements for the non-zero values:

#content { margin: 0 150px 0 20px; }

Targeting Design Problems
Recognizing common CSS bugs only comes with a fair amount of experience under your belt.
Table 11-1 is designed to give you a leg up in this area and help you track down (and resolve)
your CSS woes faster and easier. Many of these bugs have been covered in detail in this book.
Rather than repeat the associated information, a reference to the chapter and section is provided.

Table 11-1 CSS Design Problems

Bug Browser Reference Chapter and Section

Zero margins ignored on block Netscape 4.x Chapter 2, “Adjusting Margins and
elements. Borders”

Gap between background Netscape 4.x Chapter 2, “Working through
color and border. Background Problems”

Size and/or color applied to Netscape 4.x Chapter 2, “Correcting List Issues”
bullet but not list text.

Table cells not picking up Netscape 4.x Chapter 2, “Handling Table
styles applied to tables. Discrepancies”

14_579851 ch11.qxd 5/4/05 10:50 PM Page 188

TEAM LinG

189Chapter 11 — Troubleshooting CSS

Bug Browser Reference Chapter and Section

Box elements appear smaller Internet Explorer 5+ Chapter 3, “Understanding Internet
in one browser than others. (Windows) Explorer’s Box Model Problem”

Content in div tag disappears Internet Explorer 6 Chapter 3, “Revealing the
when page loads, but appears Peekaboo Bug”
when page is refreshed.

Margin of floated element is Internet Explorer 5+ Chapter 3, “Solving the Doubled
twice what it should be. (Windows) Float-Margin Problem”

Content in float extends Gecko-based Chapter 3, “Float Clearing with
beyond float boundary. browsers the :after Pseudo-Element”

Floated element shifted to Internet Explorer 5+ Chapter 4, “Three-Pixel Gap”
one side. (Windows)

Italic text breaks out of floated Internet Explorer 5.5+ Chapter 4, “Italics Float Bug”
container. (Windows)

First letter in heading disappears. Internet Explorer 5.5 Chapter 4, “First Letter Bug”
(Windows)

Absolutely positioned block not All modern browsers Chapter 9, “Position: Absolute”
moving when text resizes.

Nested box collapses to content. Internet Explorer 6 Chapter 9, “Position: Absolute”

Fixed-position areas moving. Internet Explorer 6 Chapter 9, “Position: Fixed”

Float touching clearing element Internet Explorer 5+ Chapter 9, “Managing the Float”
rendering badly. (Windows)

Negative margins on floated Internet Explorer 5+ Chapter 9, “Managing the Float”
element not aligning properly. (Windows)

Min-width property not Internet Explorer 5+ Chapter 9, “Fixed Width, Main
rendering. (Windows) Content on Left”

Page elements not centered. Internet Explorer 5 Chapter 9, “Fixed Width, Main
(Windows) Content on Left”

14_579851 ch11.qxd 5/4/05 10:50 PM Page 189

TEAM LinG

14_579851 ch11.qxd 5/4/05 10:50 PM Page 190

TEAM LinG

Implementing
CSS Hacks in
Dreamweaver

The lion’s share of the world’s professional Web developers use
Macromedia Dreamweaver at some stage of their site-building pro-
cess. Some designers create Web pages from scratch in Dreamweaver’s

Design view, while others work only in Code view. Dreamweaver’s ability to
handle dynamic applications has increased markedly in recent years. Now,
whether you code for ASP, PHP, ColdFusion, or .NET—or static HTML—
you can work in Dreamweaver.

Dreamweaver has always supported some degree of CSS. Even the first ver-
sion (released in 1997) allowed designers to attach style sheets and define
styles. In recent releases, the focus shifted to the rendering of applied CSS
in Design view. Although not perfect, Dreamweaver MX 2004 made great
strides in this regard.

What about CSS hacks and Dreamweaver? Although there is no real native
support for applying hacks, there are numerous techniques that simplify the
process. However, you really must understand how Dreamweaver works to
make the most of them.

This chapter begins with an exploration of CSS in Dreamweaver from top
to bottom: from setting CSS preferences so Dreamweaver will continually
write CSS code the way you want, to working at maximum speed with
the Relevant CSS panel. You’ll also find an in-depth discussion of one of
Dreamweaver’s most useful power tools, snippets.

Working with CSS in Dreamweaver
There is no single CSS panel or menu in Dreamweaver. Rather, CSS is
infused throughout the program. For designers, this omnipresence of CSS
is a double-edged sword. On one hand, you have many CSS access points
with numerous ways to apply styles, and even various approaches to modify-
ing an existing style. This open access allows designers to decide how they
work best. On the other hand, it’s difficult for designers to uncover all the
available options, and they often end up working harder than they should.

˛ Working with CSS
in Dreamweaver

˛ Using Snippets for
CSS Hacks

chapter

in this chapter

15_579851 ch12.qxd 5/4/05 11:10 PM Page 191

TEAM LinG

192 CSS Hacks and Filters: Making Cascading Style Sheets Work

Even if you think you know all the CSS tricks that Dreamweaver offers, I urge you to give this
section a thorough read. More likely than not, you’ll discover—or rediscover—the true CSS
power that will save you time and frustration.

Setting Up CSS Preferences
CSS support in Dreamweaver began to dominate in Dreamweaver MX. Up until that time,
Dreamweaver’s engine stressed table-based layout with HTML tags like font for formatting.
You can switch between these two modes through Preferences. Choose Edit ➪ Preferences
(Dreamweaver ➪ Preferences on the Mac) to display the Preferences dialog box. In the General
category, make sure that the “Use CSS instead of HTML tags” option is chosen. If you ever are
working on an unfamiliar system and Dreamweaver is mysteriously using font tags instead of
CSS classes to format your text, you’re either working with an older version of Dreamweaver,
or this option is unchecked.

One sure sign that Dreamweaver is set to use HTML tags and not CSS is apparent in the Property
inspector. (The Property inspector is discussed in greater detail later in this chapter in the section,
“Applying Style Rules.”) Place your cursor within any text styled by CSS. If the text’s character-
istics (font name, size, color, and so on) are not displayed in the Property inspector, you’re in
HTML tag mode.

Two-thirds of the remaining CSS-related options in Dreamweaver’s Preferences are strictly
design-time tools. You can enable or disable CSS code hints and you can also control the color
scheme you see when editing CSS rules in Code view. Both of these settings are useful for per-
sonalizing your experience of working with CSS in Dreamweaver. The third preference, however,
directly affects how Dreamweaver writes your code. Thus, it has a much longer-lasting impact.
Before you see how to control Dreamweaver’s CSS output, the following sections take a look at
the code coloring and hints options.

CSS Syntax Coloring
Like standard HTML or XHTML code in Dreamweaver, CSS code is colored according to its
syntax. Eight different syntax types are definable: @import, @media, comments, !important,
properties, selectors, values, and strings. You’re probably familiar with all of these concepts
except the last. A string is anything within quotation marks or parentheses (such as the path
to a background image or a font family). To set the look-and-feel of any of these syntax types,
follow these steps:

1. Select the Code Coloring category in the Preferences dialog box.

2. Choose CSS from the Document type list.

3. Click Edit Color Scheme.

When the Edit Coloring Scheme for CSS dialog box opens (see Figure 12-1), you’ll be able to
choose the syntax type you want to alter, and then change the text color, background color, and
various styles (bold, italic, and underline). The preview area at the bottom of the dialog box
displays how the CSS looks when your changes are applied. Click OK when you’re finished.
Any modifications take place immediately after you’ve closed Preferences.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 192

TEAM LinG

193Chapter 12 — Implementing CSS Hacks in Dreamweaver

FIGURE 12-1: Your custom palette for CSS code applies to all
your CSS styles seen in Dreamweaver’s Code view.

If you don’t want your CSS code colored at all, you must go through each of the eight syntaxes
and set the text color to the default color, black. On a page-by-page basis, you can disable col-
oring by entering into Code view and toggling off the View ➪ Code View Options ➪ Syntax
Coloring menu item. This option is also accessible from the Document toolbar under the View
Options menu button.

CSS Code Hints
If you like to hand-code your CSS styles in Dreamweaver, you’re probably familiar with code
hints. A code hint is a type of advanced tooltip that appears to remind you of available properties
and their values. When you first start defining a new CSS declaration, a list of available proper-
ties appears (see Figure 12-2). Every time you type a letter, the list moves to the properties that
start with that letter. Each new letter you type moves the list to the first matching selection.
For example, if you type b the list highlights background, add an o and border is now selected.
To choose a selected entry, press Enter (Return). You can also move up or down the list using
the respective arrow keys at any time. Not only does this process (called auto tag completion)
eliminate misspelled properties, it makes the whole process very fast.

When it comes to property values, code hints are even more valuable. After you type the colon
that follows the property name, the attributes list appears in the code hint pop-up. Typically, the
items in the list are true hints, intended to provide guidelines of expected values rather than the
values themselves. For example, after you’ve entered border:, you’ll see two code hint entries:
‘border-width’ ‘border-style’ ‘color’ and inherit. In the case of properties
expecting color values, the code hint consists of a pop-up color-picker; with URL-related prop-
erties, you’ll see an option to Browse. Choose this item to open a Select File dialog box.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 193

TEAM LinG

194 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 12-2: Code hints are a great way to ramp up your CSS writing productivity.

If you find code hints more annoying than helpful, open Preferences and switch to the Code
Hints category. There you’ll find options to turn off code hints for CSS specifically, or all code
hints in general. You can also globally disable auto tag completion. Finally, if the code hints are
not coming up fast enough, you can adjust the delay before they appear. My personal preference
is to set delay to 0. I think they’re instantly and constantly useful.

CSS Coding Styles
As a scripted language, CSS is remarkably flexible. Not only can the text-based code be format-
ted however you like (with whatever degree of white space you’re comfortable with), but many
properties offer code-minimizing and time-saving shorthand. You could, for example, set the
margins for a selector like this:

#container {
margin-top: 5px;
margin-right: 0px;
margin-bottom: 5px;
margin-left: 0px;

}

The same margins could also be written in shorthand:

#container {
margin: 5px 0px;

}

Dreamweaver is happy to use shorthand whenever possible—all you have to do is ask. In
Preferences, the CSS Styles category is almost exclusively dedicated to managing shorthand,
as shown in Figure 12-3. You have the option of (when values allow) using shorthand for the
following groupings:

15_579851 ch12.qxd 5/4/05 11:10 PM Page 194

TEAM LinG

195Chapter 12 — Implementing CSS Hacks in Dreamweaver

� Font—Combines font-family, font-size, font-style, font-variant, and
font-weight values.

� Background—Puts the background-image, background-repeat, background-
attachment, and background-position values on a single line.

� Margin and padding—For both margin and padding, combines the top, right, bottom
and left values.

� Border and border width—Groups border-style, border-color, and border-
width values.

� List-Style—Combines list-style-type, list-style-image, and list-style-
position values.

FIGURE 12-3: Compress your Dreamweaver CSS code via the
shorthand options in Preferences.

Dreamweaver is smart enough to use shorthand, even if only a couple of the available proper-
ties are used. For example, if you declare the background-image, background-repeat,
and background-position but not background-color, you’ll get code like this:

#sidebar { background: url(../images/bg_sb.gif) repeat-y center
center; }

You can also control how Dreamweaver handles existing CSS styles that are modified. If you
want to keep the styles as written—whether they are in longhand or shorthand—choose the
“Use shorthand if original used shorthand” option. If you’d prefer to convert the code to the
style chosen according to your preferences, select the “Use shorthand according to the settings
above” option. You should note that Dreamweaver will only restructure the CSS styles if they
are modified within the program.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 195

TEAM LinG

196 CSS Hacks and Filters: Making Cascading Style Sheets Work

One very important option is found in the CSS Styles category that is unrelated to shorthand.
The “Open CSS files when modified” option does two things, one obvious and the other some-
what obscure. If selected, whenever you make a change to one of the styles in an external style
sheet, that style sheet is opened in another Dreamweaver tab or window. That’s the obvious
action. What you may not realize is the effect this allows. If a CSS file is open in Dreamweaver,
any modification to its style sheet can be undone. If this option is not enabled in Preferences,
the change is permanent. For this reason, I make sure that “Open CSS files when modified” is
always selected, even though it means dealing with another open file.

Attaching External Style Sheets
One of the first acts many designers take when beginning a new Web page is to attach an
external style sheet. Dreamweaver’s point-and-click interface allows you to attach a style sheet
using either the link or @import method. You can even attach a nonexistent style sheet—
and Dreamweaver will create the file for you.

Dreamweaver offers several ways to attach a style sheet (in addition to hand-coding). All
methods are accessed through the CSS Styles panel:

� Click the Attach Style Sheet button at the bottom left of the CSS Styles panel.

� Right-click (Control-click) in the CSS Styles panel and choose Attach Style Sheet.

� From the Options menu located at the top right of the panel group, choose Attach Style
Sheet.

All three methods yield the exact same result: the Attach External Style Sheet dialog box
(see Figure 12-4) appears. You have the option to either link or import the style sheet—and
you can even preview the effect any chosen sheet will have on the current page. Clicking
Cancel or switching to another CSS file removes the displayed preview.

FIGURE 12-4: Not sure which style sheet to use? Select Preview
to get instant feedback.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 196

TEAM LinG

197Chapter 12 — Implementing CSS Hacks in Dreamweaver

To attach a style sheet in Dreamweaver, follow these steps:

1. Open the Web page you want to attach the style sheet to in Dreamweaver and make sure
it’s the current document.

2. If necessary, open the CSS Styles panel by choosing Window ➪ CSS Styles or pressing
Shift+F11.

3. From the CSS Styles panel, click the Attach Style Sheet button or use one of the other
menu-based techniques.

4. When the Attach External Style Sheet dialog box opens, click either the Link or Import
option.

Choose Link if you want to insert a link tag and Import if you’d prefer to use the
@import method.

5. Enter the path to the style sheet if you know it, or click Browse to open the standard
Select File dialog box and locate your style sheet.

The Select File dialog is preset to filter for files with a .css extension.

6. To see the effect the chosen sheet would have on the current page, click Preview. If that’s
not the desired style sheet, choose another, or click Cancel to stop the Attach Style Sheet
procedure.

7. When you’ve located the style sheet you want, click OK to write the necessary code.

Assuming your style sheet changes either the layout of the page, specific tags, or classes or IDs
already embedded in your HTML, you’ll see an immediate effect. Although the CSS rendering
in Dreamweaver MX 2004 is good, it’s not perfect—particularly when it comes to positioning
rules. Preview in one or more browsers to see the page as it will be ultimately rendered.

If you’re declaring media types for your attached style sheet, you’ll need to add that attribute in
Code view. Dreamweaver’s Code Hints feature makes it pretty easy: just place your cursor in the
link or style tag, type an m, and press Return to insert the property media. All the recog-
nized media values (all, screen, print, and so on) are then presented in a code hint.

So, how do you get Dreamweaver to create a style sheet for you if you are really starting from
scratch? Attach the style sheet as you normally would, but when it comes time to select a file,
browse to the desired folder location and enter the filename you want to use. Be sure to include a
.css file extension. You will get an alert from Dreamweaver saying it can’t find that file. Click OK
to proceed. The file is actually created when you define your first style through the Dreamweaver
interface.

The CSS Styles panel is capable of listing all the style sheets you have attached, as well as any
internally defined ones. Each is presented in an outline format and can be expanded or collapsed
as needed.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 197

TEAM LinG

198 CSS Hacks and Filters: Making Cascading Style Sheets Work

Defining CSS Styles
Hand-coding your CSS styles rules is always an option in Dreamweaver. Some designers prefer
to hand-code all the time, while others prefer Dreamweaver’s point-and-click interface. Both
methods can be used interchangeably at any time.

To work in Code view with an attached external CSS file, all you need do is open it. CSS files
can be opened, like any other Web page, through the Files panel. Simply locate the desired file
and double-click to open it. Unlike other file types, however, CSS files can also be opened
another, more direct way. If you right-click (Control-click) on the file entry in the CSS Styles
panel and choose Go to Code (see Figure 12-5), the external file is immediately loaded and
opened. Better yet, if you select a particular rule and choose Go to Code, Dreamweaver opens
the file to the selected rule, ready for editing. This technique works whether the rule is in an
external style sheet or included internally in a style tag.

FIGURE 12-5: Go to Code is an excellent navigational
tool for changing the CSS code directly.

If you’d rather not hand-code, Dreamweaver’s alternative point-and-click method is available.
Defining a new style through the CSS Styles panel is basically a two-step operation that mir-
rors the structure of a CSS declaration:

1. Enter the selector or selectors for the new style rule.

2. Set the properties and values for the selector(s).

A separate dialog box is used for each of these major steps. You can begin the style definition
process in any of a number of ways:

15_579851 ch12.qxd 5/4/05 11:10 PM Page 198

TEAM LinG

199Chapter 12 — Implementing CSS Hacks in Dreamweaver

� Click the New CSS Style button at the bottom of the CSS Styles panel.

� Right-click (Control-click) in the CSS Styles panel and choose New.

� From the Options menu located at the top right of the panel group, choose New.

� In the Relevant CSS panel, right-click (Control-click) and select New Rule.

Yet another method of beginning to define a new style rule is through the Edit Style Sheet dialog
box. You can find details on using this dialog box later in this chapter in the “Modifying Styles”
section.

Setting Selectors
Let’s break down the process into its two major components. To define a selector for a new
CSS style, follow these steps:

1. Click the New CSS Style button at the bottom of the CSS Styles panel, or use any of
the alternative methods listed previously (see Figure 12-6).

FIGURE 12-6: The most efficient approach to defining your selector
is to work bottom-up: choose your style destination first, then the
type, then the selector name itself.

2. When the New CSS Style dialog box opens, set where the style is to be defined.

■ If the style is to be part of an attached external file, select that file from the “Define in”
drop-down list. If you want to add the style to an external file currently not attached
to the page, choose New Style Sheet File and you’ll be given an opportunity to
attach a new style sheet.

■ If you want the style to be written into the head area of the current document,
choose the “Define in this document only” option.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 199

TEAM LinG

200 CSS Hacks and Filters: Making Cascading Style Sheets Work

3. Pick the selector category from the three options:

■ Class—A single CSS class.

■ Tag—A single HTML tag.

■ Advanced—Any type of selector other than single classes or single tags. This
category includes IDs, contextual selectors, grouped selectors, pseudo-classes,
pseudo-elements, as well as universal, child, adjacent-sibling, or attribute selectors.

4. Enter the selector name in the text field, according to the type chosen. Each of the selec-
tor types deals with the entered text differently:

■ Class names should start with a period. However, if you don’t include it,
Dreamweaver adds it to the rule declaration.

■ A tag name is entered without angle brackets.

■ You can enter any type of selector desired in the Advanced field, including tag or
classes. If you enter a class, however, you do need to supply the leading period.

5. Click OK to add the selector and curly braces to the desired destination and move on to
defining the style’s properties and values.

The Advanced field of the New CSS Style Definition dialog is really wide open. Enter any
selector or combination of selectors. If Dreamweaver MX 2004 doesn’t recognize it as a valid
CSS 1 selector, an alert appears. Click Yes to proceed and Dreamweaver will write out the code
as requested.

If you enter a CSS2 selector (such as h2[align=”left”]), Dreamweaver allows it without
prompting you. You will, however, get the warning when inserting a proposed CSS3 selector.

Defining Style Properties
After you’ve clicked OK to confirm your selector choices in the New CSS Style dialog box,
you’re ready to choose needed properties and their values. The CSS Style Definition dialog that
is displayed next is composed of eight different categories: Type, Background, Block, Box, Border,
List, Positioning, and Extensions. The style may include as many or as few properties as needed.

The following tables detail the available fields on the various categories and list the specific
CSS property covered by the option.

Just because Dreamweaver allows you to define a property doesn’t mean that the property will
be rendered correctly in Design view.

Use the Type category to define the appearance and layout of the page’s typeface, as shown in
Figure 12-7. Not coincidentally, the Type category contains the most supported CSS properties
(see Table 12-1), capable of being rendered in Internet Explorer 3.0 and above and Navigator 4.0
and up.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 200

TEAM LinG

201Chapter 12 — Implementing CSS Hacks in Dreamweaver

FIGURE 12-7: The first category in the CSS Definition dialog box
is one of the most frequently used.

If you don’t find the text properties you’re looking for in the Type category, try Block.

Table 12-1 CSS Type Properties

Field CSS Property

Font font-family

Size font-size

Style font-style

Line Height line-height

Decoration text-decoration

Weight font-weight

Variant font-variant

Case text-transform

Color color

15_579851 ch12.qxd 5/4/05 11:10 PM Page 201

TEAM LinG

202 CSS Hacks and Filters: Making Cascading Style Sheets Work

Backgrounds are an essential element to modern CSS design. Modern browsers take advantage
of the ability to position a background image precisely as well as control the tiling of the image.
Older browsers, such as Netscape 4.x, do not support these properties and must be handled
separately. Table 12-2 shows background properties.

Table 12-2 CSS Background Properties

Field CSS Property

Background Color background-color

Background Image background-image

Repeat background-repeat

Attachment background-attachment

Horizontal Position background-position

Vertical Position background-position

Dreamweaver includes numerous text properties in the Block category. Certain properties
(such as vertical-align) are used to position non-text elements. Table 12-3 shows block
properties.

Table 12-3 CSS Block Properties

Field CSS Property

Word Spacing word-spacing

Letter Spacing letter-spacing

Vertical Alignment vertical-align

Text Align text-align

Text Indent text-indent

Whitespace white-space

Display display

Properties in the Box category define the placement and dimension of CSS styles (see
Figure 12-8). Both margin and padding attributes may be written in shorthand if that
option is selected in Preferences (see Table 12-4).

15_579851 ch12.qxd 5/4/05 11:10 PM Page 202

TEAM LinG

203Chapter 12 — Implementing CSS Hacks in Dreamweaver

FIGURE 12-8: The Box category is often used to define floating elements.

Table 12-4 CSS Box Properties

Field CSS Property

Width width

Height height

Float float

Clear clear

Margin margin; margin-top, margin-right, margin-bottom,
margin-left

Padding padding; padding-top, padding-right, padding-bottom,
padding-left

Any or all sides of a border are set in the Border category (see Table 12-5). If the “Same for all”
option is selected, the rule is written with the border property. If “Same for all” is unchecked,
the individual border properties (border-top, border-right, border-bottom, and
border-left) are used as needed.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 203

TEAM LinG

204 CSS Hacks and Filters: Making Cascading Style Sheets Work

Table 12-5 CSS Border Properties

Field CSS Property

Style border; border-top, border-right, border-bottom, border-left

Width border; border-top, border-right, border-bottom, border-left

Color border; border-top, border-right, border-bottom, border-left

Working with list elements has gained considerable importance, because they have increasingly
been used to craft navigation bars. Be careful when using bullet images: resizing your list items
may cause the bullet images to scale improperly. Table 12-6 shows list properties.

Table 12-6 CSS List Properties

Field CSS Property

Type list-style-type

Bullet Image list-style-image

Position list-style-position

The Positioning category is heavily used in modern CSS layout techniques (see Figure 12-9).
Frequently, these properties (see Table 12-7) are applied to div tags or other containers to
structure the document.

FIGURE 12-9: div tags are often the recipient of styles with
properties from the Positioning category.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 204

TEAM LinG

205Chapter 12 — Implementing CSS Hacks in Dreamweaver

Table 12-7 CSS Positioning Properties

Field CSS Property

Type position

Width width

Height height

Visibility visibility

Z-Index z-index

Overflow overflow

Placement: Top top

Placement: Right right

Placement: Bottom bottom

Placement: Left left

Clip: Top, Right, Bottom, Left clip: rect(top, right, bottom, left)

The Extensions category is Dreamweaver’s catch-all for CSS properties that don’t really fit
anywhere else (see Table 12-8).

Table 12-8 CSS Extensions Properties

Field CSS Property

Pagebreak page-break-before, page-break-after

Cursor cursor

Filter filter

Although cursor is generally supported in modern browsers, the page-break properties are
less so. The filter property is proprietary to Internet Explorer only, although a semblance of
cross-browser compatibility for some filters can be achieved by combining an Internet Explorer–
only filter property with a related Mozilla-specific property and an increasingly supported CSS3
property. For example, the following renders the image 50% transparent in Internet Explorer 4
and up, Gecko-based browsers, and Safari:

#transparent {
filter:alpha(opacity=50);
-moz-opacity:0.5;
opacity: 0.5;

}

15_579851 ch12.qxd 5/4/05 11:10 PM Page 205

TEAM LinG

206 CSS Hacks and Filters: Making Cascading Style Sheets Work

Here are a few general tips on using the CSS Style Definition dialog:

� In fields allowing a numeric entry, you can enter the abbreviation for the measurement
unit after the number in the same field and press Tab to confirm the entry. For example,
if you wanted to set the left property to 15%, instead of entering 15 in the first field and
then selecting from the drop-down list, you can enter 15% in the initial field. Once you
press Tab, the measurement unit is selected from the drop-down list and 15 is entered in
the first field.

� Any value field that consists of a drop-down list is completely editable. If you’d prefer to
type the value into the field rather than choose a value from the list, you’re free to.

� If you must change all but one or two aspects of a border, padding, or margins setting to
be the same, leave the “Same for all” option checked and enter the most common value
in the top field. Then uncheck “Same for all” and change only those values necessary.

Applying Style Rules
Although the process of defining styles in Dreamweaver may be a bit convoluted, the applica-
tion of those styles is wonderfully direct. Dreamweaver offers a wide variety of methods for
applying styles, so you can choose the one that works best for you. You can apply any defined
style, whether it is in an external style sheet or embedded, by any of the following methods:

� Tag Selector—Right-click (Control-click) any element from the Tag Selector on the bot-
tom of the Document window and two options are immediately available, Set Class and
Set ID. Each lists the styles defined in their respective categories.

� Property inspector—Select any tag or text in the Document window and the Property
inspector displays a visual list of available classes to choose from; you can see at a glance
what font characteristics are defined in the style (see Figure 12-10). In the Text Property
inspector, classes are listed in the Style list whereas other Property inspectors label the
list as Class. Some Property inspectors (such as those for text, table, and div tags) also
show a list of possible ID styles; other Property inspectors display a single text field on
the upper left where you can enter the ID style manually.

� Standard menu—If you’re a menu-driven designer, choose Text ➪ CSS Styles to select
any of the defined classes.

� Context menu—Do you prefer the shortcut menus? Right-click (Control-click) any selec-
tion to bring up the context menu and choose CSS Styles to see which classes can be
applied. You cannot apply an ID through either the regular or context menus.

� CSS Styles panel—With any text or element selected in the Document window, right-click
(control-click) a defined class or ID shown in the CSS Styles panel and choose Apply.

� Relevant CSS panel—This key Dreamweaver panel, covered later in this chapter, also
allows you to apply any defined class. Right-click (Control-click) anywhere in the panel
and make your choice from the Set Class list.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 206

TEAM LinG

207Chapter 12 — Implementing CSS Hacks in Dreamweaver

FIGURE 12-10: When many CSS classes are defined, the Property inspector’s
visual listing of classes is extremely helpful.

Of all these methods, I find that the Tag Selector and Property inspector routes are the fastest
and easiest for me. With the Tag Selector, I can simultaneously select a tag and set a class or ID.
The Property inspector’s main benefit is the visual display of classes—very useful for CSS pages
with a number of similarly named classes defined. Both the Tag Selector and Property inspector
methods allow you to remove any class or ID by choosing None from their available options.

div tags (in addition to all the other methods outlined) have one more way to apply a CSS
class, ID, or both. With Insert Div Tag, you can combine multiple steps into one operation.
With one command you can create and precisely place a div tag on your page while at the
same time assigning it the needed styles.

To use the Insert Div Tag feature, follow these steps:

1. Choose the Insert Div Tag object from the Layout category of the Insert toolbar.
Alternatively, you can select Insert ➪ Layout Object ➪ Div Tag. The Insert Div Tag
dialog box appears, as shown in Figure 12-11.

2. If you want to apply a class to the div tag, choose one from the Class drop-down list or,
if the class has not been defined yet, enter it into the field. You do not need to enter a
leading period.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 207

TEAM LinG

208 CSS Hacks and Filters: Making Cascading Style Sheets Work

FIGURE 12-11: The Insert Div Tag object is an excellent time-saver
when constructing CSS layouts.

3. To add an ID to the div tag, select defined styles from the ID list. Again, you can enter
an ID name directly in the text field. Do not use an initial # character.

4. Select where you’d like the div tag to appear in the code. The available options are:

■ Wrap around selection

■ At insertion point

■ Before tag

■ Before start of tag

■ Before end of tag

■ After start of tag

5. If you’ve chosen a tag relational option, the accompanying list of page elements with IDs
becomes active. Select one and click OK to close the dialog.

The option to wrap the div around a selection is only present when elements or text were
selected before the Insert Div Tag dialog box was opened. This is a great technique for enclosing
existing content in a div tag, without having to resort to Code view.

Modifying Styles
It’s very rare that you define all your styles right the first time. Whether it’s your visual sense
or your client’s wishes that requires a change be made, you can easily make it happen in
Dreamweaver. Again, you’ll have multiple ways to reach your destination.

This section describes modifying style rules with Dreamweaver’s built-in tools. However, you’re not
limited to them. If you have a dedicated CSS editor you’d prefer to work with, open Preferences
and, in the File Types/Editors category, select .css from the Extensions listings. Use the Add (+)
button to pick the executable for your editor. If it’s the only editor chosen for the .css file type, it
will be marked as Primary; otherwise, you can select it and click Make Primary. After you’ve
closed Preferences, there’s one more step to take. From the CSS Styles panel Options menu,
check the Use External Editor choice. Now, whenever you opt to edit a style, your preferred CSS
editor opens instead.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 208

TEAM LinG

209Chapter 12 — Implementing CSS Hacks in Dreamweaver

If you feel most comfortable with creating styles in Dreamweaver, you can make all your changes
through the same CSS Style Definition dialog box. Simply choose the style you want to alter
in the CSS Styles panel and click the Edit Style button at the bottom of the panel to the left of
the Trashcan. The CSS Style Definition dialog box reopens, ready to be modified. Click Apply
to see your changes immediately in the Design view and click OK when you’re finished.

Automatically Created Styles

To make it easy for designers new to CSS to get up to speed, Dreamweaver MX 2004 introduced
automatically created styles. Although the Dreamweaver engineers fully intended this Property
inspector–based feature to be beneficial, it can be a bit of a nightmare to manage. Here’s how it
works:

1. The designer selects some text in Design view. The text can be a previously styled tag with
either a class or an ID—or no style at all.

2. A text-formatting change is applied in the Property inspector. This change can be to the font
name, font color, or font size.

3. Dreamweaver automatically creates a class declaration and inserts it into an embedded style
sheet in the head area of the current document. The class is named incrementally starting with
style1, followed by style2, style3, and so on.

4. If the style is applied to more than one place in the document and another formatting change
is made, Dreamweaver generates another class style.

5. If the font name, color, and/or size properties of one auto-created style are changed to match
another, the latter style is dropped and all instances of the applied style are renamed to match
the original style. For example, suppose you have one style that is colored blue and sized at 14
pixels (style1) and another that is the same size and green (style2). If you change style2’s
color to blue, Dreamweaver deletes the style2 class declaration and replaces any class attributes
set to style2 with style1.

Numerous difficulties exist with this automated approach. First, it creates an unnecessary amount
of classes. Many designers feel that classes should be used sparingly. The classes are also hard to
get rid of. If you remove the one and only time a Dreamweaver-defined style is used, the style
definition remains.

The style names are also a problem. To be truly effective, the auto-named styles should be
renamed to something more meaningful. Although Dreamweaver includes a renaming feature,
it’s moderately well-hidden and may be overwhelming for the beginner. Perhaps the largest
problem of all is Dreamweaver’s practice of embedding the new styles rather than placing them
in an external style sheet.

All in all, Dreamweaver’s automatic style sheet feature is more of a bother than boon, and
should be avoided.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 209

TEAM LinG

210 CSS Hacks and Filters: Making Cascading Style Sheets Work

Would you like to make your changes by hand? The CSS Styles panel is still your quickest way
there. Double-click the style rule you want to change and Dreamweaver reveals the CSS code.
If the style is contained in an external sheet, the CSS file is opened in Code view; if the style is
embedded in the head area, Dreamweaver changes to Split view and places the cursor at the
indicated style, ready for changes.

If you’re making a number of changes to your style rules, you might want to work with more
of an overview. Select the style-sheet name or root style tag in the CSS Styles panel and then
select Edit Style Sheet—it’s the same button as the Edit Styles, but its name is contextual. A
dialog box with the name of the current style sheet that lists all the defined style rules appears
(see Figure 12-12). This dialog box allows you to perform many CSS tasks: attach a new style
sheet, create a new style, or edit, duplicate, rename, or delete (remove) an existing one.

The process of renaming a CSS style deserves special attention. The problem with renaming a
CSS class or ID is that you must perform the operation in more than one place. Not only must
the style definition itself be renamed, but so must all the applied styles. If you’re working with
an external style sheet attached to many pages in your site, this can be quite a task.

You can also start the renaming procedure by right-clicking (Control-clicking) on a style in the CSS
Styles panel and selecting Rename.

Dreamweaver accomplishes the heavy-lifting chore of renaming applied styles through its Find
and Replace feature. Once you’ve invoked the Rename command and entered the new name
for the style in the dialog box that appears, Dreamweaver checks to see if the style is contained
in an external style sheet. If it is, an alert informs you that to rename this style multiple pages
would be affected and asks if you want to proceed. Click Yes to proceed. The Find and Replace
dialog box opens next, prefilled with proper information to perform the operation. This is sig-
nificant because regular expressions are used to locate and change just the class attributes with
the specified names. The scope of the operation is set to the entire site, and you have the option
of making the change one item at a time or using Replace All to do it all at once.

FIGURE 12-12: The duplicate feature is
excellent for crafting a series of styles
with mostly similar properties and values.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 210

TEAM LinG

211Chapter 12 — Implementing CSS Hacks in Dreamweaver

Using the CSS Relevant Panel
Another (more direct) way to modify existing styles is through Dreamweaver’s other CSS inter-
face, the Rules and Relevant CSS panel. This panel changes names (and functions) depending
on what is selected. If you select a listing in the CSS Styles panel, you’ll see the Rules panel with
all the CSS properties and values depicted (see Figure 12-13). There are two views, switchable
through the two buttons on top of the panel: the Category view separates the properties into
eight categories, paralleling those found in the CSS Style Definition dialog, whereas the List
view shows all CSS properties in alphabetical order (except that applied properties are first).
Because of the easy access this grants, I tend to stick with List view.

FIGURE 12-13: Switch between rules on the CSS
Styles panel to see (and change) the Rules panel.

Dreamweaver Layers

Following Netscape’s (the market leader at the time) naming convention, the first version of
Dreamweaver introduced the concept of layers. To the modern CSS-savvy designer, a
Dreamweaver layer is a div tag styled inline with absolute positioning. A typical layer looks like this:

<div id=”Layer1” style=”position:absolute; left:68px; top:99px;
width:205px; height:126px; z-index:1; background-color: #FFCCCC; layer-
background-color: #FFCCCC; border: 1px none #000000;”></div>

A Dreamweaver-style layer is created whenever the Draw Layer object is used, which (as the name
indicates) allows the user to draw out a layer, much like drawing a rectangle in a graphics program.
Layers can be dragged anywhere on (or off) screen and their properties modified at will through
the Property inspector, in Code view or—to some degree—through the Layers panel.

Although the Draw Layer object is useful for quick prototyping, most designers end up moving
the inline style either to an external or embedded style sheet. One of the most prolific early
extension developers, Jaro von Flocken, has created an extension called Layer to Style that moves
inline code up to the style tag. You can find it on his site, http://www.yaromat.com/dw, in the
Layers category.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 211

TEAM LinG

212 CSS Hacks and Filters: Making Cascading Style Sheets Work

When you place your cursor in the Document window (in either Design or Code view), you’ll
see the Relevant CSS panel with the properties and values applied to the current selection, as
well as a listing of all the selectors. Again, the properties panel can be displayed in either the
Category or List views. Choose any of the listed selectors and those properties are shown. As you
move up the selector tree, you’ll notice some of the properties are marked with a red strikethrough
(see Figure 12-14). The strikethrough indicates that the value of the property is not rendered in
the current selection. If you hover your mouse over the property, a tooltip explains why. Typically,
the value is either not inherited or overridden because another selector with the same property
has a higher specificity. Not only is the Relevant CSS panel highly instructive, it also serves as a
tremendous debugging tool when you’re trying to figure out why a style is not rendering as desired.

FIGURE 12-14: The Relevant CSS strikethrough
indicator is a great CSS debugging tool.

The property portion of the panel (whether it’s in Rules or Relevant CSS mode) is not just for
show. Any property’s value can be changed directly. Just click in the corresponding value field
and enter a new value. Depending on the property, the value field changes: some value fields
include drop-down lists with pertinent values, color swatches that pop up a color picker, or
point to file and folder icons to allow easy selection of files.

In all types of value fields, the value can also be entered by hand. This is especially useful when
working with properties that accept compound values (such as border). Hover over a property
value to see a code hint. After you’ve inserted your new value, press Enter (Return) or click
anywhere to confirm the change. Dreamweaver immediately renders the results.

Working with Design Time Style Sheets
It’s not unusual for designers these days to work with a variety of style sheets for a single page,
each one applicable to a particular condition. With a little JavaScript or server-side coding,
different style sheets can be applied according to which browser is being used, the platform
employed, even the screen resolution at work.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 212

TEAM LinG

213Chapter 12 — Implementing CSS Hacks in Dreamweaver

The Design Time Style Sheets command enables you to work with a specific style sheet while
hiding others. One key use of this command is to utilize a style sheet that is linked from your
page dynamically at run-time. Your style sheets, in other words, do not have to be specifically
attached to your page for you to be able to use them.

To set up design time style sheets, follow these steps:

1. From the CSS Styles panel Options menu, choose Design Time Style Sheets. Alternatively,
you can select Text ➪ CSS Styles ➪ Design Time. Whichever method you choose, the
Design Time Style Sheets dialog box (shown in Figure 12-15) is displayed.

FIGURE 12-15: The Design Time Style Sheet feature is great for
fine-tuning dynamically attached style sheets.

2. To show a specific style sheet, select the Add (+) button above the “Show only at design
time” list area and select an external style sheet from the Select File dialog box.

3. To hide a specific style sheet, select the Add (+) button above the “Hide at design time”
list area and select an external style sheet from the Select File dialog box.

4. To delete a listed style sheet from either list, select the entry and then choose the
Remove (-) button above the list.

5. Click OK when you’re finished.

Once a style sheet has been designated to be explicitly displayed or hidden at design time,
you’ll see the word “design” or “hidden” in quotes following the entry for the style sheet in the
CSS Styles panel. The displayed style sheets can be modified as you would normally; hidden
style sheets are locked against editing.

Design Time Style Sheets are extremely useful when it comes to compensating for CSS rendering
bugs in Dreamweaver.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 213

TEAM LinG

214 CSS Hacks and Filters: Making Cascading Style Sheets Work

If you’re designing sites for use in Contribute 3, you’ll find even more uses for Design Time
Style Sheets. In addition to being a great way to render a page that ultimately uses a dynami-
cally added style sheet, Design Time Style Sheets can also be used with pages derived from
templates, a common practice in Contribute. If you set up Design Time Style Sheets when you
create the template in Dreamweaver and upload the template to the Contribute site, any child
pages of that template will use the Design Time Style Sheets settings. Even Dreamweaver MX
2004 can’t do that.

Using Snippets for CSS Hacks
One tool in the Dreamweaver feature set is especially useful when it comes to applying CSS
hacks: snippets. A snippet is a portion of any kind of code, stored in a library and capable of being
repeatedly inserted. Dreamweaver’s snippets come in two varieties: block and wrap. A block
snippet is a single block of code inserted at the current cursor position. A wrap snippet, on the
other hand, consists of two code sections that are placed before and after the current selection,
effectively wrapping the selection. Both types of snippets are useful for inserting CSS hacks.

Dreamweaver manages snippets through the Snippets panel. To access the Snippets panel,
choose Window ➪ Snippets; alternatively, press the keyboard shortcut, Shift+F9. The Snippets
panel organizes the code fragments in an expandable folder structure, as shown in Figure 12-16.
Select any defined snippet and a preview area shows what the snippet looks like if it can be
rendered in Design view; if it can’t, as is the case with CSS hacks, the preview shows the code.
Not only can new snippets be added easily, but you can also add new organizational folders and
move snippets from folder to folder by dragging them.

FIGURE 12-16: The Snippets panel comes with
a large number of predefined snippets and is
easily extended to include CSS hacks.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 214

TEAM LinG

215Chapter 12 — Implementing CSS Hacks in Dreamweaver

Dreamweaver comes with a range of standard code snippets, but, as of this writing, none are
concerned directly with CSS hacks. The best approach is to create a new folder to hold the new
snippets. To do so, follow these steps:

1. Choose Window ➪ Snippets or press Shift+F9 to open the Snippets panel.

2. If any of the folders or snippets are highlighted, right-click (Control-click) into the open
area at the bottom the panel (below all folders) to deselect all items. Click once with the
left button in the same location to dismiss the shortcut menu.

Newly created folders are placed within the currently selected folder. If this happens, you
can drag the folder to the root, but, by deselecting all items, the new folder will automat-
ically be created at the base level.

3. Click the New Folder button at the bottom of the Snippets panel.

4. Name your new folder “CSS Hacks” (see Figure 12-17).

Dreamweaver MX 2004 on Windows has an unfortunate sorting bug in the Snippets panel. Any
new folders are placed at the top of the listing, out of alphabetical order. A related bug occurs
when you create a new snippet or edit an existing one: the snippets are sorted in reverse of the
current order. If the snippets are in an A–Z order, they are flipped to display in Z–A sequence.
One work-around is to open a snippet in the folder for editing and then click OK without making
any changes. I haven’t yet discovered a way to fix the sequence of the main root folders.

FIGURE 12-17: Put your new CSS Hacks folder at
the main root level so you can access it quickly.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 215

TEAM LinG

216 CSS Hacks and Filters: Making Cascading Style Sheets Work

Creating a snippet is about as easy as making a folder to hold them. Although you can enter
the code by hand directly into a dialog box, a far simpler approach exists. If you opt to make a
new snippet while some code is selected, that code automatically appears in the New Snippet
dialog box. The following steps walk through the process of converting the multipurpose Holly
Hack into a snippet:

1. Select the CSS hack code you want to convert into a snippet.

Here’s a typical example of a Holly Hack in use:

/* Start Commented Backslash Hack */
* html #container {height: 1%;}
/* Close Commented Backslash Hack */

2. In the Snippets panel, select the folder you want to hold your new snippet.

If there are existing snippets in the folder, you can also highlight one of them.

3. Click the New Snippets button from the bottom of the Snippets panel.

4. When the New Snippet dialog box opens, enter a name to be displayed in the Snippets
panel in the Name field. In this case, I’d identify it with “Holly Hack.”

5. If you like, you can enter a brief description of the snippet in the Description field.

Frankly, I never use the Description field. The box used to enter information appears too
far to the right of the snippet name to be really useful. Instead, I try to make the names
of my snippets as clear as possible.

6. Choose the type of snippet you’re creating: Wrap Selection or Insert Block. The dialog
box changes depending on your choice. In this case, Insert Block is the correct choice.

7. Enter the code in the Insert Code field.

If you had chosen Wrap Selection, you’d enter the code to appear prior to the selection in
the Insert Before field, and the code to appear after in the Insert After field.

8. Adjust the snippet, if desired.

When creating CSS hack snippets, you’ll need to indicate what could be different each
time it’s inserted. With this example, it’s the selector, currently #container. To make it
more generic (and obvious that it needs to be altered), I’ll change the snippet like this:

/* Start Commented Backslash Hack */
* html SELECTOR {height: 1%;}
/* Close Commented Backslash Hack */

9. Choose how you would like the snippet to be displayed in the preview area of the
Snippets panel, rendered in Design view or as code. The only real choice for CSS hacks
in general is Code, as shown in Figure 12-18.

10. Click OK when you’re finished.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 216

TEAM LinG

217Chapter 12 — Implementing CSS Hacks in Dreamweaver

FIGURE 12-18: Be sure to indicate the variable elements in your CSS hack,
like the selector in the Holly Hack snippet.

To insert this snippet, first place your cursor where you’d like the code to appear. Then, you can
either double-click the desired snippet in the Snippets panel or, with the snippet selected, click
Insert. You can also drag snippets from the panel and drop them anywhere in the code.

Internet Explorer conditional comments are another likely candidate for the CSS Hacks snippet
folder. I have my conditional comment snippets set up as a wrap-type snippet with this code in
the Insert Before area:

<!--[if IE]>
<style type=”text/css”>

I use this code in the Insert After area:

</style>
<![endif]-->

Why do I set it up this way? I often copy and paste rules I need to change onto my page before
I apply the snippet. For example, if I’m attempting to fix the Internet Explorer 3 pixel gap
problem, I’ll copy and paste the two declarations affected and adjust their properties as needed
so I have the following code in the head area of my page:

#floatLeft {
margin-right: -3px;

}
#content {

margin-left: 0px;
}

15_579851 ch12.qxd 5/4/05 11:10 PM Page 217

TEAM LinG

218 CSS Hacks and Filters: Making Cascading Style Sheets Work

In this case, I need to highlight the pasted declarations before I insert my snippet. Once high-
lighted, I can double-click my If IE conditional comment and the resulting code block looks
like this:

<!--[if IE]>
<style type=”text/css”>
#floatLeft {

margin-right: -3px;
}
#content {

margin-left: 0px;
}
</style>
<![endif]-->

Another way of approaching this problem is to insert the snippet before adding the rules to be
affected. In this situation, it’s best to place your cursor where you want the snippet code to
appear without highlighting any code. What happens when you bring in a wrap-type snippet
without a selection? Both the before and after code sections are placed on the page, one after
another, with the cursor right in the middle. All you need do is enter a carriage return and
insert the needed rules.

Looking for quick way to create a snippet? Select a block of code, right-click (Control-click) and
choose Create New Snippet from the context menu. How about a way to apply that template in
a flash? Select Edit ➪ Keyboard Shortcuts and define a shortcut to any defined snippet. Just pick
Snippets from the Command drop-down list, locate your snippet in the tree control, and choose
a shortcut.

15_579851 ch12.qxd 5/4/05 11:10 PM Page 218

TEAM LinG

Creating CSS-Savvy
Dreamweaver
Templates

Templates are the real workhorse of Dreamweaver. To design a site
without employing templates is to resign yourself to hours upon
hours of repetitive drudgery. Why attempt to duplicate the same

key elements for every page (including the header, navigation, and footer)
when creating a new page based on a template instantly has the desired
look-and-feel? Even more time-consuming is updating common areas
across a site—unless you’re using templates.

Style sheets are the perfect companion for templates. Change one property
value on a style sheet linked to a template and not only do you instantly affect
all the child pages (pages based on a template), but you also ensure that all
future pages based on the template will have the same properties—and the
same hacks. Attaching a CSS style sheet to a template is very straightforward
with only one potential stumbling block (noted in the next section) to look
out for. There are, however, numerous techniques for maximizing the poten-
tial held by the combination of templates and CSS. In this chapter, you learn
how to work with templates for CSS consistency as well as adaptability.
Templates and their child pages can be used in a wide variety of ways and
you want to ensure that your CSS strategy can handle all the situations your
workflow requires.

Dreamweaver’s sister program, Contribute, is also CSS-savvy—in some
ways more so than Dreamweaver itself. In the last section of this chapter,
you’ll find an exploration of the best ways to design CSS-based templates
in Dreamweaver for use in Contribute.

This chapter assumes you have working knowledge of building
templates in Dreamweaver.

˛ Setting Up Basic
Templates for CSS

˛ Constructing
Contribute-Friendly
CSS Designs

˛ Embedding Design
Time CSS Style
Switching

chapter

in this chapter

16_579851 ch13.qxd 5/4/05 10:52 PM Page 219

TEAM LinG

220 CSS Hacks and Filters: Making Cascading Style Sheets Work

Setting Up Basic Templates for CSS
When you’re developing templates in Dreamweaver, a little pre-planning goes a long way.
In addition to all the up-front design work necessary, it’s also helpful to keep in mind how
the templates will be used. Following are the most common scenarios:

� Single Developer/User—The same person who creates the templates, uses them.

� In-house Web Design Team—One or more developers create templates that are put to use
by other designers on staff.

� Designer-Developed, Client-Applied—Templates and initial child pages are created by
designers and then posted to the site (including templates). They are handed off to the
client, who can create additional child pages.

A fourth scenario in which Dreamweaver templates are created for use in Macromedia Contribute
is covered later in this chapter.

How the templates are to be used determines how the CSS is applied. Each of the three out-
lined scenarios suggests a different approach. To understand these methods, you must be up
to speed on how Dreamweaver templates work—especially in regard to the head area.

By default, everything in a Dreamweaver template is locked and unchangeable; in this state,
each child page is a carbon copy of the template. Templates used in this way are pointless, and
no designer I know works like this. The process of creating a useful template involves marking
areas of the page as editable. Typically, these editable regions encompass main content areas or
are targeted more specifically. Everything else (such as navigation) remains locked and reproduces
identically on child pages.

When Dreamweaver creates a template, whether from an existing page or from scratch, an editable
region is automatically inserted into the head area. The code for this area looks like this:

<!-- TemplateBeginEditable name=”head” --><!-- TemplateEndEditable
-->

With templates, the code to attach external style sheets is, by default, always added outside of
the head editable region and, thus, locked. Unfortunately, this does not mean that the styles in
the style sheet are secure. It only means that the style sheet cannot be unattached from a child
page. Moreover, anyone working with a child page can easily attach one or more additional
style sheets—the link or @import code is inserted into the head editable region.

I was a little shocked when (while working on this chapter) I realized the flaw in Dreamweaver’s
template design with regard to CSS. As it stands now, there is no way to stop anyone with access
to child pages on a site from altering the core CSS files attached to that page. The best alterna-
tive is to set the file to read-only, either by checking it in via Dreamweaver or by changing the file
properties in another program such as Windows Explorer or Finder.

Another consideration is how Dreamweaver handles the placement of the external style sheet
code. Where the code is inserted is differerent depending on when the style sheet is attached.
If the template is created from an existing page that already has an external style sheet attached,
the code appears above the head editable region in the newly created template, like this:

16_579851 ch13.qxd 5/4/05 10:52 PM Page 220

TEAM LinG

221Chapter 13 — Creating CSS-Savvy Dreamweaver Templates

<style type=”text/css”>
<!--
@import url(../css/rmap.css);

-->
</style>
<!-- TemplateBeginEditable name=”head” --><!-- TemplateEndEditable
-->

This means that the properties in any CSS style sheets attached to child pages would override
those attached to the template.

The reverse is true if the style sheet is attached to the template after the template has been created.
In this situation, the link or @import code appears below the head editable region. This, of
course, means that the style sheet inserted in the template will override any style sheet with the
same properties added to a child page.Let’s put all this understanding of how Dreamweaver oper-
ates to work. Here are some recommend approaches for the three previously described scenarios:

� Single Developer/User—When one person is in control of the creative process from start
to finish, I find it best to attach all style sheets at the template level. This establishes a
direct connection between style sheets and all ultimately resulting pages, and eliminates
messy organizational situations such as two or more child pages derived from the same
template with different style sheets.

� In-house Web Design Team—In this scenario, you have maximum creative input and need
the most flexibility. To achieve this goal, ensure that the initial style sheet code that is
attached to the template is above the head editable region. With this arrangement, the
base styles are adhered to. However, if a designer must make an adjustment to accommo-
date a particular child page, any changes can be inserted into a new style sheet—which
will appear in the head editable region and thus take precedence over any conflicting
styles. I recommend that if you are in charge of a Web team using templates, you insist
that no one working on child pages make changes to the core style sheets.

As noted earlier, this particular code sequence happens naturally when you create a
template from a page that already has the style sheet(s) attached. If necessary, you can
also go into Code view and move the head editable region code (<!-- Template
BeginEditable name=”head” --><!-- TemplateEndEditable -->) below
the link or @import code.

� Designer Developed, Client Applied—The key here is to balance stability of design with
client need. You want to ensure that your pages render as designed—and as accepted by
the client—but still allow the client to incorporate special cases without calling for a
redesign. Under these circumstances, I recommend that the style sheet code attached to
the template is below the head editable region. Because the designer-implemented style
sheets are farther down the cascade, the CSS rules of inheritance give them priority. If
the client tries to change an existing CSS style (for example, altering the body tag from
white to black), the template-attached style sheets will prevent that from happening.

Clients may still, however, add a new style sheet to incorporate necessary CSS classes
that may not have been in the original design. Because these classes (or other selectors)
are not part of the template-attached style sheet, they will render as expected.

16_579851 ch13.qxd 5/4/05 10:52 PM Page 221

TEAM LinG

222 CSS Hacks and Filters: Making Cascading Style Sheets Work

You might think that removing the head editable region altogether from the template would
solve the problem of unwanted style sheets, but you’d be wrong. If the head editable region is
missing, Dreamweaver inserts link or @import code in the title editable region. Deleting
the title editable region is really not an option; it makes the title attribute of the page
editable, an essential element of child pages.

Embedding Design Time CSS Style Switching
In the previous section, you saw how to allow fellow members of your Web team or clients to add
whatever external style sheets they like. But what if you want to operate under more controlled
circumstances and provide a set number of specific choices? This is particularly important if you
have painstakingly crafted CSS hacks for your style sheets. You may remember from Chapter 5
how a page was set up using JavaScript to allow the visitor to switch from one style sheet to
another at run-time. In this section, you’ll see how to set up a page to switch style sheets at
design-time.

The template feature contains some of Dreamweaver’s least-known (but more powerful) capabili-
ties, including a complete template expression language. One aspect of the template expression
language enables Dreamweaver to insert certain code if a particular condition is met or a defined
parameter is set at design time. The Multiple-If template expression is perfect for setting up a
template so that a variety of preselected CSS style sheets can be applied.

To demonstrate the potential of Multiple-If template expressions, let’s construct the code nec-
essary to choose between three different style sheets at design time. All of the following code is
to be placed in the head area of the template outside of the head editable region. This place-
ment locks the code against modification in all child pages. Whether you put it above or below
the head editable region depends on your workflow as discussed in the previous section.

Working with Nested Templates

If you’re using nested templates, you’re probably used to thinking ahead and planning your site
and designs thoroughly. A nested template in Dreamweaver is basically a template of a template—
or more specifically, a template of a child page derived from a template. As such, you can easily
extend the strategies outlined in this section to include nested templates.

For example, suppose you’re working on an intranet Web team and want to maintain a single
overall look-and-feel of a given site, but allow different designs for various departments within
that site. Attach the primary style sheet that is to affect all the site pages to the master template,
above the head editable region. You’re free to add any departmental style sheets to the proper
nested template, also above the head editable region. This is possible because every time you
save a template-derived page as a template and create a nested template, Dreamweaver inserts
a new head editable region after the old one. As with standard templates, you can leave page-
specific changes to be embedded or added as external style sheets in the head editable region of
the child page.

16_579851 ch13.qxd 5/4/05 10:52 PM Page 222

TEAM LinG

223Chapter 13 — Creating CSS-Savvy Dreamweaver Templates

The first step is to insert the template parameter statement. In this example, the value expected
for the template parameter should be a number. (A number parameter simplifies the error-
checking process.) Here, the template parameter is called selectCSS:

<!-- TemplateParam name=”selectCSS” type=”number” value=”1” -->

The default value is used to set a particular style sheet if the designer opts for another choice.

The Multiple-If template expression syntax has two main parts. The first part is the outer
wrapping code that identifies the section as a Multiple-If expression:

<!-- TemplateBeginMultipleIf -->

<!-- TemplateEndMultipleIf -->

The second part consists of the Multiple-If clauses that evaluate an expression and, if the
expression is true, insert the enclosed code in the document. A generic Multiple-If clause
looks like this:

<!-- TemplateBeginIfClause cond=”” -->
<!-- Code to insert goes here />

<!-- TemplateEndIfClause -->

Dreamweaver’s template expression language supports a full slate of unary (like the negating !)
and binary (+, -, <, >, ==, and so on) operators for the value of the cond or condition
attribute. Thus, to insert a link to a given style sheet if the selectCSS template parameter is
set to 1, the Multiple-If clause would look like this:

<!-- TemplateBeginIfClause cond=”selectCSS == 1” -->
<link href=”../css/stylesheet1.css” rel=”stylesheet”

type=”text/css” />
<!-- TemplateEndIfClause -->

The beauty of the Multiple-If syntax is that it allows for any number of conditional clauses.
For this example, the goal is to allow the designer of a child page to choose from three different
style sheets. So, three Multiple-If clauses are employed within the overall Multiple-If expression.
In the following code, I’ve highlighted the condition to make the logic easier to follow:

<!-- TemplateBeginMultipleIf -->
<!-- TemplateBeginIfClause cond=”selectCSS == 1” -->
<link href=”../css/stylesheet1.css” rel=”stylesheet”

type=”text/css” />
<!-- TemplateEndIfClause -->
<!-- TemplateBeginIfClause cond=”selectCSS == 2” -->
<link href=”../css/stylesheet2.css” rel=”stylesheet”

type=”text/css” />
<!-- TemplateEndIfClause -->
<!-- TemplateBeginIfClause cond=”selectCSS == 3” -->
<link href=”../css/stylesheet3.css” rel=”stylesheet”

type=”text/css” />
<!-- TemplateEndIfClause -->

<!-- TemplateEndMultipleIf -->

16_579851 ch13.qxd 5/4/05 10:52 PM Page 223

TEAM LinG

224 CSS Hacks and Filters: Making Cascading Style Sheets Work

One last bit of code is necessary. To ensure that a value is within the acceptable range, a fourth
Multiple-If clause is required for error-checking purposes. In this clause, if the selectCSS
template parameter entered at design time is less than 1 or greater than 3, the default style
sheet is applied:

<!-- TemplateBeginIfClause cond=”selectCSS < 1 || selectCSS > 3” -
->
<link href=”../css/stylesheet1.css” rel=”stylesheet”

type=”text/css” />
<!-- TemplateEndIfClause -->

While I find Dreamweaver’s template expression language extremely useful, it does have one
irritating flaw. When you’re working with the template, Dreamweaver does not apply the default
value of the template parameter and evaluate the page accordingly as it should. In fact, the tem-
plate is not evaluated at all. Consequently, in an example like this, you’ll see all the style sheets
rendered in the template’s Design view. If you find this unworkable, use the Design-Time Style
Sheet feature to hide unwanted templates.

How does the child page designer choose a particular style sheet? The Template Properties dialog
box provides the required mechanism. In the example, for the designer to use stylesheet3.
css, these steps would be necessary:

1. Open the child page. If the page has not been created yet, from the Assets panel, right-
click (Control-click) the desired template and choose New from Template.

2. Select Modify ➪ Template Properties.

3. When the Template Properties dialog box opens, choose the selectCSS parameter.

4. Enter 3 in the selectCSS text field, as shown in Figure 13-1.

FIGURE 13-1: With the error-checking code in place, any value
entered results in a style sheet being applied.

16_579851 ch13.qxd 5/4/05 10:52 PM Page 224

TEAM LinG

225Chapter 13 — Creating CSS-Savvy Dreamweaver Templates

5. Unless you’re working with a nested template, leave the “Allow nested templates to con-
trol this” option unchecked.

6. Click OK.

If you examine the code, you’ll see that not only is the indicated style sheet inserted, but the
code for the other, unused, style sheets are nowhere to be seen. Dreamweaver inserts only the
code for the chosen style sheet.

Should your template design require a choice between one style sheet or another, an either/or
approach is the way to go. To achieve this, the template parameter is defined with a Boolean
type, like this:

<!-- TemplateParam name=”mainDesign” type=”boolean” value=”true”
-->

The two Multiple-If clauses examine the state of the mainDesign template parameter as set
in the Template Properties dialog box. If it is shown, the condition is true (mainDesign) and
the main CSS style sheet is applied. If mainDesign is not shown, the condition is
false(!mainDesign) and the alternative style sheet inserted.

<!-- TemplateBeginIf cond=”mainDesign” -->
<link href=”../css/mainDesign.css” rel=”stylesheet”

type=”text/css” />
<!-- TemplateEndIf -->
<!-- TemplateBeginIf cond=”!mainDesign” -->
<link href=”../css/altDesign.css” rel=”stylesheet”

type=”text/css” />
<!-- TemplateEndIf -->

Although you might find the learning curve for Dreamweaver’s template expression language a
bit steep, it’s definitely worth mastering—especially if you need to control the style sheets
available.

Adjusting Layout Styles via Template Parameters
Template parameters can do much more than switch between style sheets. With careful plan-
ning and a sprinkling of template expressions, you can set up a template to toggle between two
or more different layout styles, much like switching between screen media and print media types.
The primary difference is that the switch between layout styles is under designer (not user or
automatic) control.

The key benefit of a template parameter-based control is template management. Rather than
requiring multiple templates for the same site, you can have one template with a variety of lay-
outs. This technique is a real time-saver when you must make changes to the template. Instead
of updating several templates with the same modification (and processing the changes in the site),
you only need to alter one. Moreover, template parameter-based layouts allow master designers
to hand off carefully crafted templates to be implemented by junior designers or even those
with no design skills whatsoever, like Contribute users.

16_579851 ch13.qxd 5/4/05 10:52 PM Page 225

TEAM LinG

226 CSS Hacks and Filters: Making Cascading Style Sheets Work

Suppose that you have a basic three-column layout that occasionally must contract to two
columns. The layout uses a graphic across the top and bottom to help form the column
appearance. In this situation, you’d need to accomplish three main tasks to accommodate a
two-column design:

� Remove the third column from the template.

� Change the images to compensate for the layout change.

� Increase the width of the main content column to allow the text to flow into the vacated
third column area.

All these changes (and any others necessary) can easily be triggered through a single template
parameter. Here’s how you set it up:

1. Open the three-column template for editing. This assumes that this particular layout is
the most commonly used and that the two-column design is the exception.

2. Select the content in the third column area within the container (typically a div tag).
You may find it easiest to work in Code or Split view for this process.

3. Choose Templates: Editable Region from the Insert bar’s Common category and enter a
meaningful name for the region in the dialog box that appears.

The idea here is to make the content within the div tag editable, but keep the div itself
locked. By placing only the content within the editable region, you prevent the unwanted
removal or alteration of the surrounding div.

4. Select the div tag encompassing the editable region and choose Templates: Optional
Region. In the New Optional Region dialog box, enter a recognizable name for the
area and ensure that the “Show by default” option is checked (see Figure 13-2). I
chose sideColumn for the example editable region, which inserts this code into
the head area:

<!-- TemplateParam name=”sideColumn” type=”boolean”
value=”true” -->

Ensure that you get the positioning of template regions correct. You can’t have an
optional region within an editable one, only the other way around.

Although Dreamweaver does offer an Editable Optional Region object that inserts the code
for both areas properly, I don’t recommend it. Although the tool lets you name the optional
region and set the state to either shown or hidden, the editable region is automatically and
generically named. Because the names of editable regions are one of the best ways to
identify their use, I always end up renaming the automatic name (such as EditableRegion4)
to something more useful.

16_579851 ch13.qxd 5/4/05 10:52 PM Page 226

TEAM LinG

227Chapter 13 — Creating CSS-Savvy Dreamweaver Templates

FIGURE 13-2: Determine the initial state of the optional region by
selecting the “Show by default” option.

5. In the embedded style sheet, insert a template expression to modify the main content
region’s width value depending on the state of the sideColumn template parameter.
To accomplish this in a single template expression, the conditional operator is used,
like this:

#content {
height: auto;
width: @@(sideColumn==true?”500”:”750”)@@px;
float: left;
margin-left: 30px;
margin-top: 15px;

}

Translated into English, this template expression reads, “If the template parameter
sideColumn is displayed, make the value 500; otherwise, 750.” Be sure to use the
proper wrapping syntax of double at-signs around a parenthetical statement. Also note
that the value the parameter is tested against (true) is not in quotation marks.

As noted earlier in this chapter, Dreamweaver does not assign the default values to tem-
plate parameters, so your display is likely to be a bit jumbled when you’re working on the
template itself. In the example design, the sample content from the main section overflows
into the single column. This will not be the case when editing child pages.

The last task is to set up the images that frame the columns to change when the
sideColumn property is modified.

16_579851 ch13.qxd 5/4/05 10:52 PM Page 227

TEAM LinG

228 CSS Hacks and Filters: Making Cascading Style Sheets Work

6. Insert template expressions in each of the styles that define background images to illustrate
the column widths. For this example, the file names are top_2col.jpg and bottom_
2col.jpg for the two content columns variation, and top_1col.jpg and bottom_
1col.jpg for the single content column. This naming convention allows me to target
the template expression to just change the number in the file names. Again, the condi-
tional operator is used:

#topBorder {
background-image:

url(/images/top_@@(sideColumn==true?”2”:”1”)@@col.jpg);
background-repeat: no-repeat;
margin-left: 190px;

}
#bottomBorder {
background-image:

url(/images/bottom_@@(sideColumn==true?”2”:”1”)@@col.jpg);
background-repeat: no-repeat;
margin-left: 190px;

}

7. Save the template and create a new page based on the template. The new page will ini-
tially display the side column, as shown in Figure 13-3.

FIGURE 13-3: In the child page, the default setting is to include the side column,
along with the graphics and appropriate style settings.

8. To test the template parameters, open the child page and select Modify ➪ Template
Properties. When the Template Properties dialog box opens, uncheck the “Show
sideColumn” option.

16_579851 ch13.qxd 5/4/05 10:52 PM Page 228

TEAM LinG

229Chapter 13 — Creating CSS-Savvy Dreamweaver Templates

After clicking OK, the displayed page in Dreamweaver is adjusted according to your
template parameter and the column is hidden (see Figure 13-4).

FIGURE 13-4: Changing one template parameter hides an optional region and
resets three styles, including swapping two background images.

The technique just outlined works well for embedded styles. However, if you’re using external
style sheets, you’ll need to take a different approach. Create a separate style sheet, one for each
layout variation, and insert a template expression in the link code to switch sheets on demand.
The following code assumes the two style sheets are in the same folder and named main_2col.
css and main_1col.css:

<link href=”../css/main_@@(sideColumn==true?’2’:’1’)@@col.css”
rel=”stylesheet” type=”text/css” />

Note that the quotation marks used inside the template expression are now single quotation
marks rather than double. This change is necessary because the expression is contained within
a quoted attribute value, href.

Constructing Contribute-Friendly CSS Designs
Macromedia Contribute is, in many cases, the ultimate client-acquisition tool. When a potential
client comes to you and says, “We like your designs, but our content changes daily and I don’t
want to rely on you—or pay you—to do the updates. We want our secretaries and assistants to
do that.” What do you say? “Contribute.” Contribute makes it easy for Dreamweaver designers
to create the site’s overall look-and-feel and for non-technical personnel to update static pages.
Even more importantly from this book’s perspective, the Dreamweaver-to-Contribute connec-
tion is very flexible when it comes to CSS and templates.

16_579851 ch13.qxd 5/4/05 10:52 PM Page 229

TEAM LinG

230 CSS Hacks and Filters: Making Cascading Style Sheets Work

CSS Basics in Contribute
In general, CSS in Contribute 3 works as you would expect with few surprises. The pages render
the same as in Dreamweaver MX 2004. When a new page is created from an available template
in Contribute, any attached style sheets are automatically applied. Contribute gives the admin-
istrator a tremedous degree of control over the abilities of any declared role, especially when it
comes to CSS. A Contribute administrator could, for example, grant those users assigned the
roles of Publishers or Editors full access to CSS functionality on one hand, but restrict the
options available to those in the Contributor role severely. All of the CSS preferences are han-
dled through the Styles and Fonts category of the Edit Role Settings dialog box in Contribute
(see Figure 13-5).

FIGURE 13-5: Via Contribute’s Edit Role Settings dialog, you can
limit the degree of CSS access available to any type of user.

Contribute users enabled to work with CSS see defined classes in a Style drop-down list when
editing drafts. As you can see in Figure 13-5, the classes are depicted with the CSS font-family,
size, color, alignment, and background-color properties, much as they are in Dreamweaver’s
Property inspector. The exception to this rule is undefined heading tags. In Figure 13-6,
Headings 4 through 6 are not given a CSS declaration.

One technique I recommend for Dreamweaver designers creating sites to be used in Contribute
is to give CSS classes obvious names. It’s far easier for a novice user to understand how a class
entitled firstParagraph is to be applied than one named p1.

16_579851 ch13.qxd 5/4/05 10:52 PM Page 230

TEAM LinG

231Chapter 13 — Creating CSS-Savvy Dreamweaver Templates

FIGURE 13-6: Contribute users pick from a visual style list to assign classes to text and other
page elements.

Limiting Available Classes
From the Dreamweaver side, you may not want all of your classes to be available to Contribute
users. You might, for example, employ a series of classes to style navigation buttons—something
the Contribute user will never touch. To hide classes from Contribute users while keeping them
active and rendered on the page, you’ll need to take actions in both Dreamweaver and Contribute.

In Dreamweaver, create a CSS filter file that contains only the classes you want the Contribute
user to see. The classes can be listed as a standard CSS declaration, complete with properties
and values, as a single class name with the curly braces or as a series of comma-separated class
names. All three of the following examples are valid:

.firstParagraph {
margin-top: 0px;

}

.memberContent {}

.rightImage, .leftImage, .pullQuote {}

16_579851 ch13.qxd 5/4/05 10:52 PM Page 231

TEAM LinG

232 CSS Hacks and Filters: Making Cascading Style Sheets Work

Once the filter file is completed, it must be posted to the Contribute site, which is typically the
Dreamweaver remote site.

On the Contribute side, you or whomever is assigned to be the Contribute Administrator
needs to opt to use the filter file for every role affected. This option is declared in the Edit
Role Settings dialog box, again under the Styles and Fonts category. Select the “Show only
CSS styles included in this CSS file” option and specify the previously transferred filter file.
After the change is applied, the next time anyone in any of the affected roles edits a draft in
Contribute, only the designated styles will be available, regardless if the pages are template-
derived or standard.

Applying Template Features in Contribute
Although template use in Contribute is, for the most part, transparent to the user, there are two
special cases I want to call to your attention. The first involves Design-Time Style Sheets and
is actually an enhancement over what is currently available in Dreamweaver. When you use the
Design-Time Style Sheets feature in Dreamweaver to hide or show style sheets, the settings are
applied on a per-page basis, including templates. In other words, pages derived from templates
(child pages) must have the Design-Time Style Sheets option reset.

Contribute goes Dreamweaver one better. Any Design-Time Style Sheets settings designated at
the template level are carried through for all new pages created from that template in Contribute.
This becomes especially important if you are using the Design-Time Style Sheets feature to
overcome rendering shortcomings found in both Dreamweaver MX 2004 and Contribute 3.
All you must remember is to put the template to the Contribute site; no additional steps must
be taken in either Dreamweaver or Contribute.

Working with nested templates in Contribute, however, is a different story. To be able to create
new Contribute pages from a nested template, not only does the nested template have to be
uploaded to the site, but so does the master template. For example, suppose you have a nested
template named pediatrics_dept.dwt that is based on a master template, main.dwt.
Both of these files must be put to the Contribute site.

Unfortunately, this creates a bit of a problem. If a template is posted to a Contribute site, by
default, it is available to all users of the site. Because you don’t typically want users to base
pages solely on the master template, you must hide the template from access.

Again, it is the job of the Contribute Administrator to specifically limit access to only those
templates required by the end user. This option is set in the New Pages category of the Edit
Role Settings dialog. With the “Use Dreamweaver templates” option checked, choose the
“Only show users these templates” option. Then select the desired template or templates from
the list of hidden templates and click Show (see Figure 13-7). Be sure to keep the master tem-
plate on the Hidden Template side.

16_579851 ch13.qxd 5/4/05 10:52 PM Page 232

TEAM LinG

233Chapter 13 — Creating CSS-Savvy Dreamweaver Templates

FIGURE 13-7: Both the master and nested template must be on
the Contribute site, but you can easily hide the master template
from the user.

The next time a user under the affected role attempts to create a new page from a template,
only the selected templates will be listed.

16_579851 ch13.qxd 5/4/05 10:52 PM Page 233

TEAM LinG

16_579851 ch13.qxd 5/4/05 10:52 PM Page 234

TEAM LinG

Resources

An awesome amount of information about all matters related to CSS
is available on the Web. The links that I’ve included here are a very
small sampling of the wellspring of enthusiasm, knowledge, and flair

to be found. If you’re looking for a CSS education, you could do far worse
than put aside a set number of hours every week to just explore these sites
and the links spiralling off them.

Of course, the very nature of a web is its fragility. Some of these links are
sure to be gone by the time this book hits the shelves, but most will remain.
With a little persistance and inventive searching, you’ll find these links a
great jumping-off point for your own exploration.

General CSS Sites
Following are some links to general CSS sites:

� W3C CSS:

http://w3c.org/Style/CSS/

� W3C CSS Validation Service:

http://jigsaw.w3.org/css-validator

� CSS-Edge:

http://www.meyerweb.com/eric/css/edge/

� Holy CSS Zeldman!:

http://www.dezwozhere.com/links.html

� Mezzoblue CSS Crib Sheet:

http://www.mezzoblue.com/css/cribsheet/

� QuirksMode CSS:

http://www.quirksmode.org/css/contents.html

� Working with CSS—Introduction to CSS Layout:

http://developer.apple.com/internet/css/intro
csslayout.html

� MaKo 4 CSS:

http://www.mako4css.com/

˛ General CSS Sites

˛ CSS Hack
Information

˛ CSS and JavaScript

˛ Server-Side CSS

˛ CSS and Graphics

˛ CSS and
Accessibility

˛ CSS Layouts

˛ CSS in Navigation

˛ CSS Example Sites

appendix

in this appendix

17_579851 appa.qxd 5/4/05 10:50 PM Page 235

TEAM LinG

236 CSS Hacks and Filters: Making Cascading Style Sheets Work

� CSS Creator: Useful CSS Links:

http://www.csscreator.com/links/linkspage.php

� Position Is Everything:

http://www.positioniseverything.net/index.php

� Digital Media Minute CSS:

http://www.digitalmediaminute.com/?c=CSS

CSS Hack Information
Following are some links for CSS hack information:

� Css Hack—css-discuss:

http://css-discuss.incutio.com/?page=CssHack

� Centricle—css filters (css hacks):

http://centricle.com/ref/css/filters/

� Dithered.com:

http://dithered.com/css_filters/css_only/

� Hide CSS from Browsers:

http://w3development.de/css/hide_css_from_browsers/summary/

� Testing CSS-filters:

http://www.gunlaug.no/homesite/main_8_1.html#itembottom

� Netscape 4 Issues—RichInStyle.com bug guide—Netscape 4:

http://www.richinstyle.com/bugs/netscape4.html

� Internet Explorer Bugs and Fixes—How to Attack an IE/Win Bug (describing the Holly
Hack and the relative fix):

http://www.positioniseverything.net/articles/hollyhack.html.

� Internet Explorer Bugs V. 5 and Up:

http://www.positioniseverything.net/explorer.html

� CSS—Conditional comments:

http://www.quirksmode.org/css/condcom.html

� Conditional Comments in Microsoft Internet Explorer:

http://webdesign.about.com/cs/htmltags/a/aacommentsie.htm

� Conditional Comments—Microsoft:

http://msdn.microsoft.com/workshop/author/dhtml/overview/
ccomment_ovw.asp

17_579851 appa.qxd 5/4/05 10:50 PM Page 236

TEAM LinG

237Appendix A — Resources

� Conditional Comments—Hack-free CSS for IE—Virtuelvis:

http://www.virtuelvis.com/archives/158.html

� dean.edwards.name/IE7/:

http://dean.edwards.name/IE7/

� HTC components in XP Service Pack 2 | Hoeben.net:

http://www.hoeben.net/node/view/33

� Macintosh Bugs and Hacks—CSS Bugs in IE5 for Mac:

http://www.macedition.com/cb/ie5macbugs/

� IE 5 Mac test pages—Hiding and Linking Styles:

http://www.l-c-n.com/IE5tests/hiding/

� IE5/Mac Band Pass Filter:

http://www.stopdesign.com/examples/ie5mac-bpf/

� Opera Filters—Albin.Net CSS—Owen Hack:

http://www.albin.net/CSS/OwenHack.html

� Web Specifications Supported in Opera:

http://www.opera.com/docs/specs/css/

� Safari Hacks—Safari 1.1 CSS hacks [dive into mark]:

http://diveintomark.org/archives/2003/11/12/safari

� Liorean’s Alternate Stylesheet Hack:

http://liorean.web-graphics.com/css/althack/

� Debugging CSS—Common Coding Problems with HTML and CSS:

http://www.communitymx.com/content/article.cfm?cid=67EEA

� Flash of Unstyled Content (FOUC):

http://www.bluerobot.com/web/css/fouc.asp

CSS and JavaScript
Following are some links for CSS and JavaScript:

� CSS Vault—The Web’s CSS Site:

http://cssvault.com/cat_cssjavascript.php

� CSS Filters—JS Filter Summary (dithered.com):

http://www.dithered.com/css_filters/js_summary.html

17_579851 appa.qxd 5/4/05 10:50 PM Page 237

TEAM LinG

238 CSS Hacks and Filters: Making Cascading Style Sheets Work

� JavaScript tutorial—Manipulating CSS using the W3C DOM:

http://www.howtocreate.co.uk/tutorials/index.php?tut=0&part=27

� W3C DOM Compatibility—CSS:

http://www.quirksmode.org/dom/w3c_css.html

� Rounded Corners with CSS and JavaScript:

http://www.sitepoint.com/article/rounded-corners-css-
javascript/

Server-Side CSS
Following are some links for server-side CSS:

� Creating Dynamic Cascading Style Sheets with ASP:

http://www.4guysfromrolla.com/webtech/tips/t071201-1.shtml

� Use ASP in your .js, .vb, and .css Files:

http://www.devx.com/tips/Tip/14971

� Compressing your CSS with PHP:

http://www.fiftyfoureleven.com/sandbox/compress-css-with-php/

� PHP in CSS: Dynamic Background Color... Ack!:

http://www.webmasterworld.com/forum88/5025.htm

CSS and Graphics
Following are some links for CSS and graphics:

� CSS Image Text Wrap Tutorial Part 2—the SandBag <DIV>:

http://www.bigbaer.com/css_tutorials/css.image.text.wrap.
tutorial.htm

� CSS Transparency for IE and Mozilla, Firebird and Firefox (-moz-opacity and filter:
alpha):

http://www.domedia.org/oveklykken/css-transparency.php

� CSS Scale Image Html Tutorial:

http://www.bigbaer.com/css_tutorials/css.scale.image.html.
tutorial.htm

17_579851 appa.qxd 5/4/05 10:50 PM Page 238

TEAM LinG

239Appendix A — Resources

� CSS2—background-attachment on any element:

http://www.quirksmode.org/css/background.html

� Newt Edge:

http://www.phoenity.com/newtedge/

� Information on Border Slants:

http://infimum.dk/HTML/slantinfo.html

� Rubber Headers:

http://www.pixy.cz/blogg/clanky/rubberheaders/

� The geekhell.net solutions page:

http://www.geekhell.net/solutions/

� Mike Davidson—Introducing sIFR:

http://www.mikeindustries.com/blog/archive/2004/08/sifr

� Image Replacement—css-discuss:

http://css-discuss.incutio.com/?page=ImageReplacement

� Image Replacement—No Span:

http://www.moronicbajebus.com/playground/cssplay/
image-replacement/

� Cross-Browser Variable Opacity with PNG:

http://www.alistapart.com/articles/pngopacity/

� PNG Behavior (WebFX):

http://webfx.eae.net/dhtml/pngbehavior/pngbehavior.html

� Cross-Column Pull-Outs—A List Apart:

http://www.alistapart.com/articles/crosscolumn/

CSS and Accessibility
Following are some links for CSS and accessibility:

� CSS, Accessibility, and Standards Links:

http://www.dezwozhere.com/links.html

� Screenreader Visibility—css-discuss:

http://css-discuss.incutio.com/?page=ScreenreaderVisibility

17_579851 appa.qxd 5/4/05 10:50 PM Page 239

TEAM LinG

240 CSS Hacks and Filters: Making Cascading Style Sheets Work

� Day 26: Using relative font sizes—Dive into Accessibility:

http://diveintoaccessibility.org/day_26_using_relative_font_
sizes.html

� Speech Stylesheets—css-discuss:

http://css-discuss.incutio.com/?page=SpeechStylesheets

CSS Layouts
Following are some links for CSS layouts:

� Little Boxes:

http://www.thenoodleincident.com/tutorials/box_lesson/
boxes.html

� The Layout Reservoir—BlueRobot:

http://www.bluerobot.com/web/layouts/

� Netscape 4, CSS layout, 3 columns with Header and Footer:

http://www.fu2k.org/alex/css/layouts/3Col_NN4_RWS_C.mhtml

� CSS Layouts for Netscape 4—saila.com:

http://www.saila.com/usage/layouts/nn4-layouts.shtml

� CSS Stuff—XHTML/CSS—3 column layouts—Netscape 4–compatible:

http://www.fu2k.org/alex/css/

� 37signals css_layouts:

http://www.37signals.com/css_layouts/

� Creating Liquid Layouts with Negative Margins—A List Apart:

http://www.alistapart.com/articles/negativemargins/

� Flexible Layouts with CSS Positioning—A List Apart:

http://www.alistapart.com/articles/flexiblelayouts/

� CSS positioning—some reflections:

http://www.barry.pearson.name/articles/layout_tables/
css_positioning.htm

� INP 170: CSS Positioned Layouts:

http://courses.wccnet.edu/~jwithrow/schedule.php?f=170&p=
css-positioning

17_579851 appa.qxd 5/4/05 10:50 PM Page 240

TEAM LinG

241Appendix A — Resources

� Browser support—page layout properties:

http://www.westciv.com/style_master/academy/browser_support/
page_layout.html

� Fixed Positioning for Internet Explorer on Windows:

http://devnull.tagsoup.com/fixed/

� Fixed positioning—Anne’s Weblog About Markup and Style:

http://annevankesteren.nl/archives/2004/07/fixed-positioning

� Faux Columns—A List Apart:

http://www.alistapart.com/articles/fauxcolumns/

� Table-less Layouts:

http://www.tjkdesign.com/templates/

� Curing Float Drops and Wraps:

http://nemesis1.f2o.org/aarchive?id=11

� Centering:

http://www.wpdfd.com/editorial/wpd0103.htm#toptip

CSS in Navigation
Following are some links for CSS in navigation:

� Projectseven.com—Tutorials—CSS Uberlinks:

http://www.projectseven.com/tutorials/css/uberlinks/

� Semantic (X)HTML Markup—Styling Lists:

http://www.communitymx.com/abstract.cfm?cid=D6F9E

� Horizontal Nav:

http://www.communitymx.com/abstract.cfm?cid=E6E3C80DBF1BF378

� CSS Tabbed Navigation:

http://nontroppo.org/test/tab1.html

� CSS navigation menu:

http://www.webcredible.co.uk/user-friendly-resources/css/
css-navigation-menu.shtml

� Sons of Suckerfish—HTML Dog:

http://www.htmldog.com/articles/suckerfish/

17_579851 appa.qxd 5/4/05 10:50 PM Page 241

TEAM LinG

242 CSS Hacks and Filters: Making Cascading Style Sheets Work

� Suckerfish Dropdowns—A List Apart:

http://www.alistapart.com/articles/dropdowns/

� Simplicity:

http://www.alexkeeny.com/simplicity/archives/entry-21/

� CSS Pop-Up Menus:

http://www.moronicbajebus.com/playground/cssplay/pop-up-menus/

� CSS Vault—The Web’s CSS Site:

http://cssvault.com/cat_navigation.php

� Relatively Absolute—Cross-Browser CSS Tabs with Rollover:

http://www.paulpgriffin.com/css/tabs/tabs.html

� Drop Down Llama Menu—CSS Play—Sea Mus N Squirrel:

http://moronicbajebus.com/playground/cssplay/drop-down-
llama-menu/

� Hierarchical dynamic menu with CSS:

http://www.pixy.cz/blogg/clanky/csshiermenu/

� All CSS Flyout Navigation:

http://www.positioniseverything.net/css-flyout.html

CSS Example Sites
Following are some links for CSS example sites:

� CSS Zen Garden:

http://csszengarden.com/

� CSS hacks—Stylegala:

http://www.stylegala.com/resources/css_hacks.htm

� CSS User Interface by Ivan Bueno:

http://userwww.sfsu.edu/~ibueno/wireframe.html

� CSS Beauty:

http://www.cssbeauty.com/

� Project Seven:

http://www.projectseven.com/

17_579851 appa.qxd 5/4/05 10:51 PM Page 242

TEAM LinG

CSS Hacks and
Filters Charts

The CSS community enjoys a wealth of information. Unfortunately,
the sheer amount of information can also be a detriment: finding the
right fix often requires significant digging. One of the primary reasons

I wrote this book was to make it easier to find specific hacks for specific
browsers. The two tables in this appendix, “Hiding CSS from a Browser”
and “Revealing CSS Hacks and Filters,” are a direct approach to attempt to
achieve that goal.

I structured these charts to be as useful and practical as possible. They are,
by definition, limited in scope and by no means exhaustive. I concentrated
only on the primary browsers: Internet Explorer, Mozilla/Firefox, Netscape,
Opera, and Safari, because I find these are the ones required most frequently.
The information in the tables was drawn from many sources, including
my own testing. However, one source must be singled out: dithered.com.
The charts compiled by Chris Nott at http://dithered.com/css_
filters/css_only/index.php are indispensible and an amazing
amount of work. Where his charts revealed a hack that I did not cover in
the book, I shamelessly (and with great joy) included it for your use and
credited it as such. I greatly appreciate his work.

Hiding CSS from a Browser
The hacks in Table B-1 are intended to be used when you need to hide
CSS from a particular browser. Where possible, I indicated version ranges
of browsers affected by a specific hack.

˛ Hiding CSS from a
Browser

˛ Revealing CSS to a
Browser

appendix

in this appendix

18_579851 appb.qxd 5/4/05 11:08 PM Page 243

TEAM LinG

244 CSS Hacks and Filters: Making Cascading Style Sheets Work

Table B-1 Hiding CSS Hacks and Filters

Browser Hack/Filter Example Reference

Internet Conditional <!--[if !IE 6]> Chapter 4
Explorer 6.x, Comment <style type=”text/css”>
Windows p { color: red; }

</style>
<![endif]-->

Internet Conditional <!--[if !IE 5.5]> Chapter 4
Explorer 5.5, Comment <style type=”text/css”>
Windows p { color: red;

</style>
<![endif]-->

Internet Comment #header/* */ { text-align: left;} Chapter 3
Explorer 5, After Selector
Windows Hack
and Mac

Internet Conditional <!--[if !IE 5]> Chapter 4
Explorer 5.x, Comment <style type=”text/css”>
Windows p { color: red; }

</style>
<![endif]-->

Internet Owen Hack head:first-child+body #navSection { Chapter 3
Explorer 5/6, (also hides background-image: url(“navbar.gif”);
Windows CSS from }

Opera 6
and below)

Conditional <!--[if !IE]> Chapter 4
Comment <style type=”text/css”>

p { color: red; }
</style>
<![endif]-->

Internet @media /* hide from Internet Explorer 5 for Mac */ Chapter 3
Explorer 5 Hack @media all {
for Mac #mainHeading { text-decoration: none; }

}

Mac Band /**//*/ Chapter 3
Pass Filter @import “../styles/default.css”;

/**/

18_579851 appb.qxd 5/4/05 11:08 PM Page 244

TEAM LinG

245Appendix B — CSS Hacks and Filters Charts

Browser Hack/Filter Example Reference

Commented /* Use backslash within comment \ to Chapter 3
Backslash ignore next rule in IE5 Mac */
Hack

Mac-modified *>html .endSection {he\ight: auto;} Chapter 3
Tan Hack

Internet @import @import “mystyle.css”; Chapter 2
Explorer 4, Syntax
Windows

Internet Selector + #testElement/**/ { dithered.
Explorer 4/5, Empty color: #00cc00; com
Windows Comment }

Opera 6.x Modified html>body #navSection { Chapter 3
Owen Hack bac\kground-image: url(“navbar.gif”);

}

Opera 3/6.x Owen Hack head:first-child+body #navSection { Chapter 3
(also hides background-image: url(“navbar.gif”);
CSS from }
Internet
Explorer 5/6
on Windows)

Netscape 4.x, Netscape 4 /* Start hiding from NS4 */ Chapter 2
Windows Comment /*/*/

Hack (also .para1 { font-weight: bold }
called the .para2 { font-weight: bold }
Escaped /* Resume showing to NS4 */
Comment
End Hack)

Netscape 4 div#content h1 { margin-bottom: 0px } Chapter 2
Element
ID Hack

Netscape 4 border: 1px solid red !important; Chapter 2
!important
Hack

Safari 1.0/1.1 Lang Pseudo- p:lang(fr) { color: red; } Chapter 3
Class Hack

18_579851 appb.qxd 5/4/05 11:08 PM Page 245

TEAM LinG

246 CSS Hacks and Filters: Making Cascading Style Sheets Work

Revealing CSS to a Browser
Table B-2 is the opposite of Table B-1. The hacks here are used to pass CSS to a given browser
and no other.

Table B-2 Revealing CSS Hacks and Filters

Browser Hack/Filter Example Reference

Internet Conditional <!--[if IE 6]> Chapter 4
Explorer 6.x, Comment <style type=”text/css”>
Windows p { color: red; }

</style>
<![endif]-->

Internet Zoom Hack #container { zoom: 1; } Chapter 3
Explorer 5.5 +,
Windows

Conditional <!--[if IE gte 5.5]> Chapter 4
Comment <style type=”text/css”>

p { color: red; }
</style>
<![endif]-->

Internet IE 5.5/Windows @media tty { dithered.com
Explorer 5.5, Band Pass Filter i{content:”\”;/*” “*/}}@m;
Windows @import ‘styles.css’; /*”;}

}/* */

Internet Conditional <!--[if IE 5.0]> Chapter 4
Explorer 5, Comment <style type=”text/css”>
Windows p { color: red; }

</style>
<![endif]-->

IE 5.0/Windows @media tty { dithered.com
Band Pass Filter i{content:”\”;/*” “*/}};

@import ‘styles.css’; {;}/*”;}
}/* */

Internet Conditional <!--[if IE 5]> Chapter 4
Explorer 5.x, Comment <style type=”text/css”>
Windows p { color: red; }

</style>
<![endif]-->

18_579851 appb.qxd 5/4/05 11:08 PM Page 246

TEAM LinG

247Appendix B — CSS Hacks and Filters Charts

Browser Hack/Filter Example Reference

Internet Conditional <!--[if IE]> Chapter 4
Explorer 5/6, Comment <style type=”text/css”>
Windows p { color: red; }

</style>
<![endif]-->

Internet Tan Hack (also * html .boxModel { Chapter 3
Explorer 5/6, known as the width: 230px;
Mac and Star HTML Hack) w\idth: 200px;
Windows }

Internet Dummy Selector null#testElement { dithered.com
Explorer 4, color: #00cc00;
Windows }

Internet Underscore Hack #testElement { dithered.com
Explorer 4.x/6.x, _color: #00cc00;
Windows and }
4.x/5.0, Macintosh

Mozilla 1.x Tantek Box .boxModel { Chapter 3
(up to 1.75) Model Hack width:230px;

(typically used in voice-family: “\”}\””;
conjunction with voice-family:inherit;
Be Nice to width:200px;
Opera 5 Hack) }

Opera 7.x Media Queries html>body .boxModel { Chapter 3
Hack width:200px }

Opera 5.x Be Nice to html>body .boxModel { Chapter 3
Opera 5 Hack width:200px }
(also known as
the Child
Selector Hack)

Opera 4/5, @media with @media not all { dithered.com
Windows; Negated Media #testElement {
Opera 5, Mac Type color: #00cc00;

}
}

Netscape 4.x, Fabrice’s #footer { Chapter 2
Windows Inversion (also /*/*//*/ color:green; /* */

reveals CSS to }
Opera 5, Mac
and Opera 4/5,
Windows)

18_579851 appb.qxd 5/4/05 11:08 PM Page 247

TEAM LinG

18_579851 appb.qxd 5/4/05 11:08 PM Page 248

TEAM LinG

SYMBOLS AND NUMERICS
/* ... */ enclosing comments, 14–15
3-pixel gap bug, 63–65, 189
37signals css_layouts Web site, 240

A
a:active pseudo-class

for button interactivity, 162
order of, with other pseudo-classes, 187

absolute value, position property, 135–137
accessibility

features for, 5–6, 121–122
print media style sheets, 125–128
screen readers, 128–129
text resizing, 122–125
Web sites about, 240

a:focus pseudo-class, 188
:after pseudo-element, 49–51, 144–145
a:hover pseudo-class

for button interactivity, 162
Netscape 4 support, 12
order of, with other pseudo-classes, 187
for tab interactivity, 172

a:link pseudo-class
for button interactivity, 162
order of, with other pseudo-classes, 187

All CSS Flyout Navigation Web site, 242
AlphaImageLoader, 116
Apple Safari browser

CSS support in, 33
detecting versions of, 73–74
Exclamation Mark Hack, 52
:lang pseudo-class hack, 52
problems with, 51–52

application servers. See server-side CSS
processing

Arvidsson, Erik (PNG format support in
Internet Explorer), 116

Aslett, Tony (:after pseudo-element hack),
50–51

ASP, dynamically controlling CSS output using,
87–91

auto tag completion, Dreamweaver, 193–194
a:visited pseudo-class

for button interactivity, 162
order of, with other pseudo-classes, 187

B
background

Internet Explorer 5 for Mac, problems
with, 34

Internet Explorer 7 functionality, 45
Netscape 4 support, 12, 23–25
properties, in Dreamweaver, 202
for rounded rectangles, 109
Safari support, 52
shorthand syntax for, Dreamweaver, 195

background-attachment property
in Dreamweaver, 195, 202
Netscape 4 support, 12

background-color property
in Dreamweaver, 202
Netscape 4 support, 12, 23–24
Safari support, 52

background-image property
in Dreamweaver, 195, 202
Netscape 4 support, 12

background-position property
in Dreamweaver, 195, 202
Internet Explorer 7 functionality, 45
Netscape 4 support, 12, 24–25
for rounded rectangles, 109

background-repeat property
in Dreamweaver, 195, 202
Netscape 4 support, 12

Baer, Jack (sandbag divs), 100

Index

19_579851 bindex.qxd 5/4/05 10:51 PM Page 249

TEAM LinG

Band Pass Filter
for Internet Explorer 5 for Mac, 36
for Internet Explorer 5 for Windows, 246

Be Nice to Opera Hack, Opera, 53–54
behavior function, Internet Explorer, 116–117
Bergevin, Holly (clearing floats), 144
Bersvendsen, Arve (Media Queries Hack), 54
block elements

Box Model problem and, 38–40
properties, in Dreamweaver, 202

block snippet, Dreamweaver, 214
border-bottom property

in Dreamweaver, 204
Netscape 4 support, 12

border-color property, in Dreamweaver,
195, 204

border-left property
in Dreamweaver, 204
Netscape 4 support, 12

border-right property
in Dreamweaver, 204
Netscape 4 support, 12

borders
Box Model problem and, 38–40
Netscape 4 support, 12, 21–23, 188
properties, in Dreamweaver, 195, 203–204
rounded rectangles

creating with images, 108–112
creating with Mozilla, 106–107

shorthand syntax for, Dreamweaver, 195
border-style property, in Dreamweaver,

195, 204
border-top property

in Dreamweaver, 204
Netscape 4 support, 12

border-width property, in Dreamweaver,
195, 204

Bowman, Douglas (Fahner Image
Replacement), 103

Box Model problem, Internet Explorer versions
5 through 6, 38–41, 152, 189

box properties, in Dreamweaver, 203
Browser Detect script (Nott), 73–74
browser sniffers, 72
Browser support — page layout properties

Web site, 241
BrowserCam Web site, 180
browsers, Web. See also specific browsers

detecting browsers and versions of
with ASP, 88–89
with ColdFusion, 96
with JavaScript, 72–74
with PHP, 92–93

dynamically creating style sheets specific to
with ASP, 87–91
with ColdFusion, 94–97
with PHP, 91–94

hiding styles from a specific browser, 243–245
serving style sheets specific to, 75–76
showing styles to a specific browser, 246–247
viewing CSS pages in all target browsers, 180
which browsers to target when developing,

179
buttons, in navigation bars

horizontal navigation bars, 164–165
vertical navigation bars, 159–164

C
Cameron, Rob (Flash replacement), 118
Cascading Style Sheets (CSS)

advantages of, 2–6
hacking, necessity of, 8–10
history of, 1–2
limitations of, 6–8
Web sites about, 235–236

Çelik, Tantek
fixing the Box Model, 41
Mac Band Pass Filter, 36

250 Index ■ B–C

19_579851 bindex.qxd 5/4/05 10:51 PM Page 250

TEAM LinG

centering page elements, 156–157
Centering Web site, 241
Centricle — css filters Web site, 236
Chandanais, Rob (flash of unstyled content), 177
Child Selector Hack

fixed positioning and, 139
for footers, 156

Clark, Joe (screen readers), 129
clear property, 143
code hints, Dreamweaver, 193–194
Code view, Dreamweaver, 198
ColdFusion, dynamically controlling CSS output

using, 94–97
color

background
Dreamweaver, 202
Netscape 4 support, 12, 23–24
Safari, 52

for CSS syntax, Dreamweaver, 192–193
Comment After Selector Hack, 44, 104–105
Comment Hack, Netscape 4, 14–16, 123
Commented Backslash Hack

for floating problems on Internet
Explorer, 145

Internet Explorer 5 for Mac, 36–37
comments, syntax for, 14–15. See also conditional

comments
Compressing your CSS with PHP Web site, 238
conditional comments

definition of, 57–58
for downlevel browsers, 62–63
for First Letter bug, 67–69
for fixed positioning, 140–141
for Italics Float bug, 65–67
for margin property problem on Internet

Explorer, 148
for min-width property problem on Internet

Explorer, 147
for navigation button problems, 163–165

showing or hiding styles using, 59–62, 244,
246, 247

storing externally, 61
for tabbed navigation in Internet Explorer,

175
for Three-Pixel Gap bug, 63–65

Conditional Comments in Microsoft Internet
Explorer Web site, 237

Conditional Comments — Hack-free CSS for
IE — Virtuelvis Web site, 237

Conditional Comments — Microsoft
Web site, 237

containing block
absolute positioning and, 136
fixed positioning and, 138
relative positioning and, 132

content, separating from presentation, 2
Contribute (Macromedia)

CSS features in, 230–231
limiting classes available with, 231–232
templates in, 232–233

Creating Dynamic Cascading Style Sheets with
ASP Web site, 238

Creating Liquid Layouts with Negative
Margins — A List Apart Web site, 240

Cross-Browser Variable Opacity with PNG Web
site, 239

Cross-Column Pull-Outs — A List Apart Web
site, 239

CSS, Accessibility, and Standards Links Web
site, 240

CSS Beauty Web site, 242
CSS (Cascading Style Sheets)

advantages of, 2–6
hacking, necessity of, 8–10
history of, 1–2
limitations of, 6–8
Web sites about, 235–236

CSS Creator: Useful CSS Links Web site, 236

251Index ■ C

19_579851 bindex.qxd 5/4/05 10:51 PM Page 251

TEAM LinG

CSS Filters — JS Filter Summary Web site, 238
Css Hack — css-discuss Web site, 236
CSS hacks. See also specific hacks

definition of, 8
for hiding CSS from browsers, list of,

243–245
implementing with snippets in Dreamweaver,

214–218
for revealing CSS to browsers, list of,

246–247
Web sites about, 236–237
whether to use, 8–10

CSS hacks — Stylegala Web site, 242
CSS Image Text Wrap Tutorial Part 2 — the

SandBag Web site, 239
CSS Layouts for Netscape 4 — saila.com, 240
CSS navigation menu Web site, 241
CSS Pop-Up Menus Web site, 242
CSS positioning — some reflections Web

site, 240
CSS properties. See also specific properties

defining, in Dreamweaver, 200–206
Netscape 4 support, 12

CSS Scale Image Html Tutorial Web site, 239
CSS selectors

defining, in Dreamweaver, 199–200
Netscape 4 support, 12
specificity of, problems with, 185–186

CSS Stuff — XHTML/CSS — 3 column
layouts — Netscape 4 compatible Web
site, 240

CSS style sheets
applied after page first displayed, 177–179
attaching, 13–14, 27–28
changing values in based on user preference,

81–85
creating, in Dreamweaver, 197
design time style sheets, Dreamweaver,

212–214
design time style switching, Dreamweaver,

222–225

dynamically controlling with ASP, 87–91
dynamically controlling with ColdFusion,

94–97
dynamically controlling with PHP, 91–94
external, attaching in Dreamweaver, 196–197
hiding from Internet Explorer 3 and 4, 27–28
linking instead of importing in Netscape 4,

13–14
paths to, problems with, 186–187
print media style sheets, 125–128
serving based on browser and version, 72–76
switching based on user preference, 76–81
templates for, in Dreamweaver, 219–222

CSS styles
applying, in Dreamweaver, 206–208
automatically created, in Dreamweaver, 209
defining, in Dreamweaver

methods of, 198–199
properties, 200–206
selectors, 199–200

hiding from a specific browser, 243–245
hiding from all browsers except Netscape 4,

17–18
hiding from Internet Explorer 3 and 4, 27–28
hiding from Netscape 4, 14–17
modifying, in Dreamweaver, 208–212
multiple styles attached to page, 4
showing to a specific browser, 246–247

CSS Tabbed Navigation Web site, 241
CSS Transparency for IE and Mozilla, Firebird

and Firefox Web site, 239
CSS User Interface by Ivan Bueno Web site, 242
CSS Vault — The Web’s CSS Site, 238, 242
CSS Zen Garden Web site, 242
CSS2 features, 121
CSS2 — background-attachment on any element

Web site, 239
CSS — Conditional comments Web site, 236
CSS-Edge Web site, 235
Curing Float Drops and Wraps Web site, 241
cursor property, Dreamweaver, 205

252 Index ■ C

19_579851 bindex.qxd 5/4/05 10:51 PM Page 252

TEAM LinG

D
Davidson, Mike (Flash replacement), 118
Day 26: Using relative font sizes — Dive into

Accessibility Web site, 240
dean.edwards.name/IE7 Web site, 237
debugging CSS, procedure for, 179–181
Debugging CSS — Common Coding Problems

with HTML and CSS Web site, 237
design

CSS design bugs, list of, 188–189
features for, 3–4
flexible model for, 2
user control of, 4–5

design time style sheets, Dreamweaver, 212–214
design time style switching, Dreamweaver,

222–225
Digital Media Minute CSS Web site, 236
display property

for buttons in multilevel drop-downs, 167
in ColdFusion, 96
Netscape 4 support, 12

Dithered.com Web site, 236
div tag (layers)

for background problems in Netscape 4,
23–24

definition of, 4
in Dreamweaver layers, 211
for floating problems, 49
inserting, in Dreamweaver, 204, 207–208
Peekaboo Bug and, 44–47, 189
putting in an array, in DOM, 77
for rounded rectangles, 111
sandbag divs, 100
style switching in DOM, 81–85
for table problems in Internet Explorer 4, 29
for table problems in Netscape 4, 26–27

Dive Into Accessibility Web site, 123
DOCTYPE switching, 41
Document Object Model (DOM)

changing style sheet values using, 81–85
definition of, 71, 76–77
switching style sheets using, 76–81

document.all object, JavaScript, 72
document.getElementById() method,

JavaScript, 72, 82
document.images object, JavaScript, 72
document.layers object, JavaScript, 72
document.write() function, JavaScript,

75–76
DOM (Document Object Model)

changing style sheet values using, 81–85
definition of, 71, 76–77
switching style sheets using, 76–81

Double Float-Margin problem, Internet
Explorer versions 5 through 6, 47–48

downlevel browsers, 58, 62–63
Dreamweaver (Macromedia)

applying CSS styles, 206–208
automatically-created styles, 209
background properties, 195, 202
block properties, 202
border properties, 195, 203–204
box properties, 203
code hints, enabling or disabling, 193–194
creating style sheets, 197
CSS support in, 191–192
cursor property, 205
defining CSS styles

methods of, 198–199
properties, 200–206
selectors, 199–200

design time style sheets, 212–214
design time style switching, 222–225
external style sheets, attaching, 196–197
filter property, 205
hand-coding styles in Code view, 198
layers in, 211
list properties, 204
media types, declaring for attached style

sheets, 197
modifying CSS styles, 208–212
nested templates, 222
page break properties, 205

Continued

253Index ■ D

19_579851 bindex.qxd 5/4/05 10:51 PM Page 253

TEAM LinG

Dreamweaver (Macromedia) (continued)
point-and-click interface for defining styles

procedure for, 198–199
properties, 200–206
selectors, 199–200

positioning properties, 204–205
preferences for CSS, setting, 192–196
properties, defining, 200–206
Relevant CSS panel, 211–212
selectors, defining, 199–200
shorthand syntax, setting, 194–196
snippets, applying hacks with, 214–218
syntax coloring, setting, 192–193
template expression language, 222–224
templates for CSS, 219–222
type properties, 201
undoing modifications to open files,

enabling, 196
XML prolog problems with, 183

Drop Down Llama Menu — CSS Play — Sea
Mus N Squirrel Web site, 242

drop-shadow effect, 112–114

E
Easton, Bob (screen readers), 129
Edwards, Dean (Internet Explorer 7

functionality), 45
element ID hack, Netscape 4, 17
element nodes, DOM, 76–77
examples for CSS, Web sites, 241–242
Exclamation Mark Hack, Safari, 52
external style sheets, attaching

content-type for, 87–88, 94
in Dreamweaver, 196–197
relative path for, 186–187, 220, 228
syntax for, 13–14, 27–28

F
fact of life (FOL), 10
Fahner, Todd

Fahner Image Replacement (FIR), 103
text resizing, 123

Faux Columns — A List Apart Web site, 241
Federal Rehabilitation Act, 5
filter property, Dreamweaver, 205
FIR (Fahner Image Replacement), 103
Firefox browser

CSS support in, 33, 48
debugging tool for, 181
floating element problems, 127–128
hack strategies for, 49–51
server-side CSS processing, 182

First Letter bug, 67–69, 189
:first-child pseudo-element

Internet Explorer 7 functionality, 45
Owen Hack and, 43–44, 56

:first-letter property, Netscape 4
support, 12

:first-line property, Netscape 4 support, 12
Fixed Positioning for Internet Explorer on

Windows Web site, 241
Fixed positioning — Anne’s Weblog About

Markup and Style Web site, 241
fixed value, position property, 138–141
fixed-width layout, 146–149
flash of unstyled content (FOUC)

description of, 177–179
Web site about, 237

Flash, replacing text with, 117–120
flexible design model, 2
Flexible Layouts with CSS Positioning — A List

Apart Web site, 240
float clearing with :after pseudo-element,

49–51, 144–145
float property, 142–146
floated sliced images, 100
floating elements

box properties for, in Dreamweaver, 203
problems with, 127–128, 142–146, 189

fluid layout
definition of, 146
two-column, 149–150

FOL (fact of life), 10
folder tabs, for navigation, 170–176

254 Index ■ D–F

19_579851 bindex.qxd 5/4/05 10:51 PM Page 254

TEAM LinG

font-family property
in Dreamweaver, 195, 201
Internet Explorer 3 and 4 support, 29–30
Netscape 4 support, 12
Safari support, 52
setting with body tag selector, 18

fonts
Internet Explorer 3 and 4 support, 29–30
measurement unit for, 123
Netscape 4 support, 12, 18–21
Safari support, 52
shorthand syntax for, Dreamweaver, 195
type properties, in Dreamweaver, 201
using images in place of, 103–105

font-size property
in Dreamweaver, 195, 201
measurement unit for, 123
Netscape 4 support, 12, 20
Safari support, 52

font-style property, in Dreamweaver,
195, 201

font-variant property
in Dreamweaver, 195, 201
Netscape 4 support, 12

font-weight property
in Dreamweaver, 195, 201
Netscape 4 support, 12, 19–20

footers, 154–156
forward slash (/* ... */), enclosing comments,

14–15
Foster, Sam (Commented Backslash Hack), 36
FOUC (flash of unstyled content)

description of, 177–179
Web site about, 237

G
Gallant, John (clearing floats), 144
Gecko-based browsers

CSS support in, 33
float clearing with :after pseudo-element,

49–51

floating element problems, 127–128
list of CSS design bugs for, 189
problems with, 48–49

The geekhell.net solutions page Web site, 239
Gillespie, Joe (centering page elements), 156
graphics (images)

background, Netscape 4 support, 23–25
drop-shadow effect, 112–114
flowing text around, 99–102
for navigation buttons, 160–161
in PNG format, 115–117
replacing text with, 103–105, 117–120
rounded rectangles, 108–112
scaling, 105–106
Web sites about, 238–239

Griffeths, Patrick (multilevel drop-downs with
Internet Explorer), 166

H
hacks. See also specific hacks

definition of, 8
for hiding CSS from browsers, list of,

243–245
implementing with snippets in Dreamweaver,

214–218
for revealing CSS to browsers, list of,

246–247
Web sites about, 236–237
whether to use, 8–10

headings
expanding, in Netscape 4, 20–21
replacing with images, 103–105

Hide CSS from Browsers Web site, 236
Hierarchical dynamic menu with CSS Web

site, 242
hierarchical menus (multilevel drop-downs),

166–170
Holly Hack

for floating problems on Internet Explorer,
46–47, 142, 144–145

for Gecko-based browsers, 49
for three-column layout, 152

255Index ■ F–H

19_579851 bindex.qxd 5/4/05 10:51 PM Page 255

TEAM LinG

Holy CSS Zeldman! Web site, 235
Horizontal Nav Web site, 241
horizontal navigation bars, 164–165
HTC components in XP Service Pack 2 Web

site, 237
HTML (Hypertext Markup Language). See also

conditional comments
checking settings in Dreamweaver, 192
limitations of, 1–2
validation of, 184

I
IBM HomePage Reader, 128
IE 5 Mac test pages — Hiding and Linking

Styles Web site, 237
IE5/Mac Band Pass Filter Web site, 237
Image Replacement — css-discuss Web site, 239
Image Replacement — No Span Web site, 239
images

background, Netscape 4 support, 23–25
drop-shadow effect, 112–114
flowing text around, 99–102
for navigation buttons, 160–161
in PNG format, 115–117
replacing text with, 103–105, 117–120
rounded rectangles, 108–112
scaling, 105–106
Web sites about, 238–239

@import method
Dreamweaver using, setting preference

for, 196
flash of unstyled content (FOUC) and, 178
Internet Explorer 3 support, 27
Internet Explorer 4 support, 28
media style sheet and, 125
Netscape 4 support, 12, 13
specifying media types, 183–184

!important property
hack for Internet Explorer using, 113
hack for Netscape 4 using, 17
Netscape 4 support, 12
specificity and, 186

includes, server-side, including external
conditional comments with, 61

Information on Border Slants Web site, 239
inherit value, Netscape 4 support, 19
inheritance

Internet Explorer 4 support, 29
Netscape 4 support, 18–19

Inman Flash Replacement, 118
Inman, Shaun (Flash replacement), 118
INP 170: CSS Positioned Layouts Web site, 241
Internet Explorer browser

conditional comments used with, 59–62
detecting versions of, 72–74
float property, problems with, 142–143,

144–145
!important hack, 113
list of CSS design bugs for, 189
min-width property not supported, 147
multilevel drop-downs, problems with, 166,

168–169
pixel shifting problem with, 6–7
Three-Pixel Gap bug, 63–65, 189
version 3 and 4

fonts, problems with, 29–30
hiding styles from, 27–28
margins, problems with, 30–31
padding, problems with, 30–31
tables, problems with, 29

version 5 for Mac only
Commented Backslash Hack, 36–37
hiding styles from, 35–37, 244
Mac Band Pass filter, 36
Mac-Modified Tan Hack, 37
@media hack, 35–36
problems with, 34–35
right property, problems with, 137

version 5 only
CSS support in, 7, 33
margin: 0 auto property not

supported, 148
Tantek Hack, 124
Windows Band Pass Filter, 246

256 Index ■ H–I

19_579851 bindex.qxd 5/4/05 10:51 PM Page 256

TEAM LinG

version 5 through 6
Box Model problem, 38–41, 152, 189
Comment After Selector Hack, 44,

104–105
Double Float-Margin problem, 47–48
flash of unstyled content (FOUC), 178
Holly Hack, 152
Italics Float bug, 65–67, 189
Modified Simple Box Model Hack,

5–6, 43
navigation button problems, 163–164, 165
Owen Hack, 43–44
Tan Hack, 41–43, 48

version 5.5 only
First Letter bug, 67–69, 189
Italics Float bug, 65–67, 189
showing or hiding styles specific to,

59–60, 244
Windows Band Pass Filter, 246

version 6 only
CSS support in, 33
Holly Hack, 46–47
Peekaboo Bug, 44–47, 189
PNG format support, 115–117
position:relative and, 133
quirks mode, 41, 43, 141, 183

version 7 functionality, enabling, 45
Internet Explorer Bugs and Fixes Web site, 236
Internet Explorer Bugs V.5 and Up Web site, 236
Italics Float bug, 65–67, 189

J
JavaScript

changing style sheet values based on user
preference, 81–85

detecting browsers with JavaScript objects, 72
for multilevel drop-downs in Internet

Explorer, 166, 168–169
reasons to use with CSS, 71
serving style sheets based on browser and

version, 72–76

switching style sheets based on user
preference, 76–81

Web sites about, 238
JavaScript tutorial — Manipulating CSS using

the W3C DOM Web site, 238
JAWS for Windows, 128
Jogin, Tomas (Flash replacement), 118

K
Kalsey, Adam (tabbed navigation), 171
Koch’s, Peter-Paul, Web site, 35

L
:lang pseudo-class hack, Safari, 52
Langridge, Stuart (image replacement), 104
:last-child pseudo-element, Internet

Explorer 7 functionality, 45
layers (div tag)

for background problems in Netscape 4,
23–24

definition of, 4
in Dreamweaver layers, 211
for floating problems, 49
inserting, in Dreamweaver, 204, 207–208
Peekaboo Bug and, 44–47, 189
putting in an array, in DOM, 77
for rounded rectangles, 111
sandbag divs, 100
style switching in DOM, 81–85
for table problems in Internet Explorer 4, 29
for table problems in Netscape 4, 26–27

layers, Dreamweaver, 211
layout. See also navigation

adjusting with template parameters, in
Dreamweaver, 222–225

centering page elements, 156–157
containing block and, 132
fixed-width, 146–149
floating elements, 142–146
fluid, 146, 149–150

Continued

257Index ■ I–L

19_579851 bindex.qxd 5/4/05 10:51 PM Page 257

TEAM LinG

layout (continued)
footers, 154–156
positioning, 131–141
three-column, 151–154
two-column, 146–150, 152–153
Web sites about, 240–241

The Layout Reservoir — BlueRobot
Web site, 240

Leahy, Seamus (image replacement), 104
letter-spacing property

in Dreamweaver, 202
Internet Explorer 5.5 support, 68
Netscape 4 support, 12

line-height property
in Dreamweaver, 201
Netscape 4 support, 12, 22–23

link tag
Dreamweaver using, setting preference

for, 196
flash of unstyled content (FOUC) and, 179
media style sheet and, 125
using with @import method, 13–14, 27–28

links
in print media style sheets, 127–128
screen readers and, 129

Liorean’s Alternate Stylesheet Hack Web
site, 237

liquid layout
definition of, 146
two-column, 149–150

A List Apart Web site, 112, 123
lists

for buttons in navigation bars
horizontal navigation bars, 164–165
vertical navigation bars, 160–164

for multilevel drop-downs, 166–167
Netscape 4 support, 13, 25–26, 188
properties, in Dreamweaver, 204
shorthand syntax for, Dreamweaver, 195
for tabbed navigation, 171

list-style property, Netscape 4 support, 26
list-style-image property

in Dreamweaver, 195, 204
Netscape 4 support, 12

list-style-position property
in Dreamweaver, 195, 204
Netscape 4 support, 12, 26

list-style-type property
in Dreamweaver, 195, 204
Netscape 4 support, 13, 26

Little Boxes Web site, 240
loading time of Web pages, 3
LVHA, indicating order of pseudo-classes, 187

M
Mac Band Pass filter, 36
MacEdition’s CodeBitch Web site, 35
Macintosh Bugs and Hacks — CSS Bugs in IE5

for Mac Web site, 237
Mac-Modified Tan Hack, 37
Macromedia Contribute

CSS features in, 230–231
limiting classes available with, 231–232
templates in, 232–233

Macromedia Dreamweaver
applying CSS styles, 206–208
automatically-created styles, 209
background properties, 195, 202
block properties, 202
border properties, 195, 203–204
box properties, 203
code hints, enabling or disabling, 193–194
creating style sheets, 197
CSS support in, 191–192
cursor property, 205
defining CSS styles

methods of, 198–199
properties, 200–206
selectors, 199–200

design time style sheets, 212–214

258 Index ■ L–M

19_579851 bindex.qxd 5/4/05 10:51 PM Page 258

TEAM LinG

design time style switching, 222–225
external style sheets, attaching, 196–197
filter property, 205
hand-coding styles in Code view, 198
layers in, 211
list properties, 204
media types, declaring for attached style

sheets, 197
modifying CSS styles, 208–212
nested templates, 222
page break properties, 205
point-and-click interface for defining styles

procedure for, 198–199
properties, 200–206
selectors, 199–200

positioning properties, 204–205
preferences for CSS, setting, 192–196
properties, defining, 200–206
Relevant CSS panel, 211–212
selectors, defining, 199–200
shorthand syntax, setting, 194–196
snippets, applying hacks with, 214–218
syntax coloring, setting, 192–193
template expression language, 222–224
templates for CSS, 219–222
type properties, 201
undoing modifications to open files,

enabling, 196
XML prolog problems with, 183

maintenance of Web pages, 3
MaKo 4 CSS Web site, 235
margin: 0 auto property, Internet Explorer 5

not supporting, 148
margins

Box Model problem and, 38–40
Internet Explorer 4 support, 30–31
Internet Explorer 5 support, 148
Netscape 4 support, 12, 21–23, 188
shorthand syntax for, Dreamweaver, 195

measurement units, potential problems with, 188

Media Queries Hack, Opera, 54–55
@media selector

hack for Internet Explorer 5 for Mac, 35–36
Internet Explorer 4 support, 28
specifying media types, 183–184

media types
declaring for attached style sheets, in

Dreamweaver, 197
potential problems with, 183–184
speech media type, 6

menus, hierarchical (multilevel drop-downs),
166–170

Meyer, Eric (floated sliced images), 100
Mezzoblue CSS Crib Sheet Web site, 235
Mike Davidson — Introducing sIFR

Web site, 239
MIME type setting, potential problems

with, 182
min-width property, 147
Modified Simple Box Model Hack, 43
moz-border-radius property, 107
Mozilla browser

CSS support in, 33, 48
debugging tool for, 181
floating element problems, 127–128
hack strategies for, 49–51
server-side CSS processing, 182

multilevel drop-downs (hierarchical menus),
166–170

N
navigation

hierarchical menus (multilevel drop-downs),
166–170

navigation bars with buttons
horizontal navigation bars, 164–165
vertical navigation bars, 159–164

in print media style sheets, 127
tabs, 170–176
Web sites about, 241–242

259Index ■ M–N

19_579851 bindex.qxd 5/4/05 10:51 PM Page 259

TEAM LinG

navigator.userAgent property, 73–74
nested templates, Dreamweaver, 222
Netscape 4, CSS layout, 3 columns with Header

and Footer Web site, 240
Netscape 4 Issues Web site, 236
Netscape browser

detecting versions of, 72–74
floating element problems, 127–128
version 4

background, problems with, 12, 23–25
borders, problems with, 12, 21–23, 188
centering page elements, 156
Comment Hack, 14–16, 123
CSS properties supported, 12
CSS selectors supported, 12
CSS support in, 7
element ID hack, 17
fonts, problems with, 12, 18–21
headings, problems with, 20–21
hiding styles from, 14–18, 245
hiding styles from all other browsers,

17–18
!important hack, 17
linking style sheets instead of importing,

13–14
list of CSS design bugs for, 188
lists, problems with, 12, 13, 25–26, 188
margins, problems with, 12, 21–23, 188
position:relative not

supported, 133
tables, problems with, 13, 26–27, 188
text resizing, 123
two-column layout for, 152–153

Newt Edge Web site, 239
Nott, Chris (Browser Detect script), 73–74

O
Opera browser

Be Nice to Opera Hack, 53–54
detecting versions of, 74

Owen Hack, 56
scaling images, 106
version 4, Netscape 4 rule hiding affecting,

17–18
version 5

Netscape 4 Comment Hack and, 16, 124
Netscape 4 rule hiding affecting, 17–18

version 7
CSS support in, 33
Media Queries Hack, 54–55

Opera Filters — Albin.Net CSS — Owen Hack
Web site, 237

Orchard, Dunstan (drop-shadow effect), 112
overflow condition, 140
Owen Hack

Internet Explorer versions 5 through 6, 43–44
Opera, 56

P
padding

Box Model problem and, 38–40
Internet Explorer 4 support, 30–31
shorthand syntax for, Dreamweaver, 195

page breaks, Dreamweaver, 205
paths to style sheet, potential problems with,

186–187
Pederick, Chris (Web Developer toolbar), 181
Peekaboo Bug, Internet Explorer version 6,

44–47, 189
performance of CSS, 3
PHP, dynamically controlling CSS output using,

91–94
PHP in CSS: Dynamic Background

Color...Ack! Web site, 238
Pilgrim, Mark (text resizing), 123
pixel shifting problem in Internet Explorer, 6–7
PNG Behavior (WebFX) Web site, 239
PNG format for images, 115–117
portability of Web pages, 3
Position Is Everything (PIE) Web site, 46, 236

260 Index ■ N–P

19_579851 bindex.qxd 5/4/05 10:51 PM Page 260

TEAM LinG

position property
absolute value, 135–137, 189
fixed value, 138–141, 189
relative value, 132–134
static value, 131–132

positioning properties, in Dreamweaver,
204–205

preferences for CSS, Dreamweaver, 192–196
presentation, separating from content, 2
print media style sheets, 125–128
Project Seven Web site, 146, 242
Projectseven.com — Tutorials — CSS Uberlinks

Web site, 241
properties. See also specific properties

defining, in Dreamweaver, 200–206
Netscape 4 support, 12

Property inspector, Dreamweaver
applying CSS styles, 206
checking settings for HTML or CSS, 192

pseudo-classes
for button interactivity, 162
:lang pseudo-class hack, 52
ordering, potential problems with, 187–188
for tab interactivity, 172

pseudo-elements
float clearing with, 49–51, 144–145
Owen Hack and, 43–44, 56

Q
quirks mode, Internet Explorer, 41, 43, 141, 183
QuirksMode CSS Web site, 235
QuirksMode Web site, 35
quotes, in url() syntax, 187

R
rectangles, rounded

creating with images, 108–112
creating with Mozilla, 106–107

relative value, position property, 132–134
Relatively Absolute — Cross-Browser CSS Tabs

with Rollover Web site, 242

Relevant CSS panel, Dreamweaver, 211–212
resources. See Web sites
Response.ContentType property, 87–88
right property, problems with, 137
Robertson, C. Z. (replacing headings with

images), 103
Rounded Corners with CSS and JavaScript Web

site, 238
rounded rectangles

creating with images, 108–112
creating with Mozilla, 106–107

Rubber Headers Web site, 239
rules. See CSS styles

S
Safari Hacks — Safari 1.1 CSS hacks

Web site, 237
sandbag divs, 100
Scalable Inman Flash Replacement (sIFR),

118–120
Screen Capture Service, BrowserCam, 180
screen readers, 128–129
Screenreader Visibility — css-discuss Web

site, 240
Selector Hack

Child Selector Hack, 139, 156
Comment After Selector Hack, 5–6, 44,

104–105
for multilevel drop-downs, 167

selectors
defining, in Dreamweaver, 199–200
Netscape 4 support, 12
specificity of, problems with, 185–186

Semantic (X)HTML Markup — Styling Lists
Web site, 241

server-side CSS processing
with ASP, 87–91
potential problems with, 182
Web sites about, 238

server-side include (SSI), including external
conditional comments with, 61

261Index ■ P–S

19_579851 bindex.qxd 5/4/05 10:51 PM Page 261

TEAM LinG

shadows, drop-shadow effect, 112–114
Shea, Dave (image replacement enhancement),

105
shorthand syntax, Dreamweaver, 194–196
sIFR (Scalable Inman Flash Replacement),

118–120
Simplicity Web site, 242
single quotes, in url() syntax, 187
skip links, screen readers and, 129
slash (/* ... */), enclosing comments, 14–15
snippets, Dreamweaver, 214–218
Sons of Suckerfish — HTML Dog Web

site, 241
speech media type, 6
Speech Stylesheets — css-discuss Web site, 240
SSI (server-side include), including external

conditional comments with, 61
static value, position property, 131–132
style sheets. See CSS style sheets
styles. See CSS styles
Suckerfish Dropdowns — A List Apart Web

site, 242
syntax coloring, Dreamweaver, 192–193

T
Table-less Layouts Web site, 241
tables. See also three-column layout; two-column

layout
Internet Explorer 4 support, 29
Netscape 4 support, 13, 26–27, 188

tabs, for navigation, 170–176
Tan, Edwardson (Tan Hack), 41
Tan Hack

Gecko-based browsers, 49
Internet Explorer versions 5 through 6,

41–43, 48
Mac-Modified Tan Hack, 37

Tantek Hack
Internet Explorer 5, 124
Opera, 53

template expression language, Dreamweaver,
222–224

templates for CSS, Dreamweaver
applying in Contribute, 232–233
creating, 219–222
template parameters

adjusting layout styles with, 225–229
switching styles at design time with,

222–225
Testing CSS-filters Web site, 236
text

flowing around images, 99–102
Netscape 4 support, 12
properties, in Dreamweaver, 201, 202
replacing with images, 103–105, 117–120
resizing for accessibility, 122–125
shadows, 112

text-align property
in Dreamweaver, 202
Netscape 4 support, 12

text-decoration property, in
Dreamweaver, 201

text-indent property
in Dreamweaver, 202
Netscape 4 support, 12

text-shadow property, 112
text-transform property, in

Dreamweaver, 201
37signals css_layouts Web site, 240
three-column layout, 151–154
Three-Pixel Gap bug, 63–65, 189
troubleshooting

CSS design bugs, list of, 188–189
debugging CSS, procedure for, 179–181
flash of unstyled content (FOUC), 177–179
measurement units, problems with, 188
media types, problems with, 183–184
ordering of pseudo-classes, problems with,

187–188
paths to style sheet, problems with, 186–187

262 Index ■ S–T

19_579851 bindex.qxd 5/4/05 10:51 PM Page 262

TEAM LinG

server-side setup, problems with, 182
specificity of selectors, problems with,

185–186
validation, usefulness of, 184
XML prolog, problems with, 182–183

two-column layout, 146–150, 152–153
type properties, Dreamweaver, 201

U
unstyled content, visible before CSS styles

applied, 177–179
uplevel browsers, 58, 62
url() syntax, quoting in, 187
Use ASP in your .js, .vb, and .css Files

Web site, 238
userAgent property, detecting browsers with

with ASP, 88–89
with ColdFusion, 96
with JavaScript, 73–74
with PHP, 92–93

users
changing style sheet values, 81–85
controlling design, 4–5
switching style sheets, 76–81

V
validating Web pages, 184
van Kesteren, Anne (fixed positioning hacks), 141
vertical navigation bars, 160–164
vertical-align property

in Dreamweaver, 202
Netscape 4 support, 12

Villarreal, Sergio (drop-shadow effect), 112
visually impaired users

features for, 5–6
text resizing for, 122–125

W
W3C CSS Validation Service, 184, 235
W3C CSS Web site, 235

W3C DOM Compatibility — CSS Web
site, 238

Web browsers. See also specific browsers
detecting browsers and versions of

with ASP, 88–89
with ColdFusion, 96
with JavaScript, 72–74
with PHP, 92–93

dynamically creating style sheets specific to
with ASP, 87–91
with ColdFusion, 94–97
with PHP, 91–94

hiding styles from a specific browser, 243–245
serving style sheets specific to, 75–76
showing styles to a specific browser, 246–247
viewing CSS pages in all target browsers, 180
which browsers to target when developing,

179
Web Developer toolbar, 181
Web Page Design for Designers Web site, 156
Web pages

loading time of, 3
maintenance of, 3
multiple CSS styles attached to, 4
portability of, 3
validating, 184

Web server. See server-side CSS processing
Web sites

about accessibility, 240
about CSS, 235–236
about CSS examples, 241–242
about CSS hacks, 236–237
about graphics, 238–239
about JavaScript and CSS, 238
about layouts, 240–241
about navigation, 241–242
about server-side CSS, 238
All CSS Flyout Navigation, 242
Apple Safari issues, 52

Continued

263Index ■ T–W

19_579851 bindex.qxd 5/4/05 10:51 PM Page 263

TEAM LinG

Web sites (continued)
Browser Detect script (Nott), 73–74
Browser support — page layout properties, 241
BrowserCam, 180
Centering, 241
Centricle — css filters, 236
Chandanais, Rob (flash of unstyled

content), 177
Commented Backslash Hack, 36
Compressing your CSS with PHP, 238
Conditional Comments in Microsoft Internet

Explorer, 237
Conditional Comments — Hack-free CSS

for IE — Virtuelvis, 237
Conditional Comments — Microsoft, 237
Creating Dynamic Cascading Style Sheets

with ASP, 238
Creating Liquid Layouts with Negative

Margins — A List Apart, 240
Cross-Browser Variable Opacity with

PNG, 239
Cross-Column Pull-Outs — A List

Apart, 239
CSS, Accessibility, and Standards Links, 240
CSS Beauty, 242
CSS bugs in Internet Explorer 5 for Mac, 35
CSS Creator: Useful CSS Links, 236
CSS Filters — JS Filter Summary, 238
Css Hack — css-discuss, 236
CSS hacks — Stylegala, 242
CSS Image Text Wrap Tutorial Part 2 — the

SandBag, 239
CSS Layouts for Netscape 4 — saila.com, 240
CSS navigation menu, 241
CSS Pop-Up Menus, 242
CSS positioning — some reflections, 240
CSS Scale Image Html Tutorial, 239
CSS Stuff — XHTML/CSS — 3 column

layouts — Netscape 4 compatible, 240
CSS Tabbed Navigation, 241

CSS Transparency for IE and Mozilla,
Firebird and Firefox, 239

CSS User Interface by Ivan Bueno, 242
CSS Vault — The Web’s CSS Site, 238, 242
CSS Zen Garden, 242
CSS2 features, 121
CSS2 — background-attachment on any

element, 239
CSS — Conditional comments, 236
CSS-Edge, 235
Curing Float Drops and Wraps, 241
Day 26: Using relative font sizes — Dive into

Accessibility, 240
dean.edwards.name/IE7, 237
Debugging CSS — Common Coding

Problems with HTML and CSS, 237
Digital Media Minute CSS, 236
Dithered.com, 236
Dive Into Accessibility, 123
Drop Down Llama Menu — CSS Play — Sea

Mus N Squirrel, 242
Fahner Image Replacement (FIR), 104
Faux Columns — A List Apart, 241
Fixed Positioning for Internet Explorer on

Windows, 241
Fixed positioning — Anne’s Weblog About

Markup and Style, 241
Flash of Unstyled Content (FOUC), 237
Flexible Layouts with CSS Positioning — A

List Apart, 240
floated sliced images, 100
The geekhell.net solutions page, 239
Hide CSS from Browsers, 236
Hierarchical dynamic menu with CSS, 242
Holly Hack, 46
Holy CSS Zeldman!, 235
Horizontal Nav, 241
HTC components in XP Service Pack 2, 237
HTML validation, 184

264 Index ■ W

19_579851 bindex.qxd 5/4/05 10:51 PM Page 264

TEAM LinG

IE 5 Mac test pages — Hiding and Linking
Styles, 237

IE5/Mac Band Pass Filter, 237
Image Replacement — css-discuss, 239
Image Replacement — No Span, 239
Information on Border Slants, 239
INP 170: CSS Positioned Layouts, 241
Internet Explorer 7 functionality, 45
Internet Explorer Bugs and Fixes, 236
Internet Explorer Bugs V.5 and Up, 236
JavaScript tutorial — Manipulating CSS

using the W3C DOM, 238
Koch’s, Peter-Paul, 35
The Layout Reservoir — BlueRobot, 240
Liorean’s Alternate Stylesheet Hack, 237
A List Apart, 112, 123
Little Boxes, 240
MacEdition’s CodeBitch, 35
Macintosh Bugs and Hacks — CSS Bugs in

IE5 for Mac, 237
MaKo 4 CSS, 235
Mezzoblue CSS Crib Sheet, 235
Mike Davidson — Introducing sIFR, 239
Netscape 4, CSS layout, 3 columns with

Header and Footer, 240
Netscape 4 Issues, 236
Newt Edge, 239
Opera Filters — Albin.Net CSS — Owen

Hack, 237
PHP in CSS: Dynamic Background

Color...Ack!, 238
PNG Behavior (WebFX), 239
Position Is Everything (PIE), 236
Project Seven, 146, 242
Projectseven.com — Tutorials — CSS

Uberlinks, 241
QuirksMode, 35
QuirksMode CSS, 235
Relatively Absolute — Cross-Browser CSS

Tabs with Rollover, 242

Rounded Corners with CSS and
JavaScript, 238

Rubber Headers, 239
Safari Hacks — Safari 1.1 CSS hacks, 237
sandbag divs, 100
screen readers, 128, 129
Screenreader Visibility — css-discuss, 240
Semantic (X)HTML Markup — Styling

Lists, 241
Simplicity, 242
Sons of Suckerfish — HTML Dog, 241
Speech Stylesheets — css-discuss, 240
Suckerfish Dropdowns — A List Apart, 242
Table-less Layouts, 241
Testing CSS-filters, 236
37signals css_layouts, 240
Use ASP in your .js, .vb, and .css Files, 238
W3C CSS, 235
W3C CSS Validation Service, 184, 235
W3C DOM Compatibility — CSS, 238
Web Developer toolbar, 181
Web Page Design for Designers, 156
Web Specifications Supported in Opera, 237
WebFX, 117
Wittenbergh, Philippe, 35
Working with CSS — Introduction to CSS

Layout, 235
Web Specifications Supported in Opera Web

site, 237
Webb, Dan (multilevel drop-downs with

Internet Explorer), 166
WebFX Web site, 117
Werner, Tom (Flash replacement), 118
white-space property

in Dreamweaver, 202
:nowrap

in horizontal navigation, 164
Netscape 4 support, 12

Wilkins, John Albin (Owen Hack), 43, 56
Windows Band Pass Filter, 246

265Index ■ W

19_579851 bindex.qxd 5/4/05 10:51 PM Page 265

TEAM LinG

Wittenbergh, Philippe, Web site, 35
word-spacing property

in Dreamweaver, 202
Netscape 4 support, 12

Working with CSS — Introduction to CSS
Layout Web site, 235

wrap snippet, Dreamweaver, 214
Wubben, Mark (Flash replacement), 118

X
XML prolog, potential problems with, 182–183

Z
Zeldman, Jeffrey

writing about Fahner Image Replacement,
103

writing about text resizing, 123

266 Index ■ W–Z

19_579851 bindex.qxd 5/4/05 10:51 PM Page 266

TEAM LinG

